
THE COSET METHOD FOR RUBIK’S CUBE: SOLUTION

(DRAFT)

3. A solution

There are multiple approaches and multiple reasonable answers. Here’s one.

3.1. Problem 1/1’.

3.1.1. Conditions characterizing D. We will give conditions satisfied by any state
that is solvable using only half turns (henceforth called “half-turn state”).

First, consider the following collection of corners in the solved state:

Let Sev × Sod be the subgroup of S8 that preserves this collection. (With the
numbering from §1, this is the subgroup that permutes the even-numbered corners
among themselves and the odd-numbered corners among themselves.) Since any
half turn preserves this collection, we have

(3.1) D ≤ Sev × Sod.

In other words, any half-turn state satisfies

(D1): The even-numbered corners are permuted among themselves (and so
the odd-numbered corners are permuted among themselves).

Next, any half turn exchanges two pairs of corners, so it is an even permutation.
Hence

(3.2) D ≤ A8,

where A8 is the alternating group (the subgroup of even permutations in S8). In
other words, any half-turn state satisfies

(D2): The corresponding permutation in S8 has even parity.

Finally, note that any half turn sends any plane containing 4 corners to another
such plane. It follows that any half-turn state satisfies

(D3): Corners 1, 2, 3, 4 lie in a single plane.

That is, corners 1, 2, 3, 4 are in one of the following configurations, up to orienting
the entire cube:

Proposition 3.1. A state is a half-turn state if and only if it satisfies (D1)–(D3).
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For convenience, here are the conditions again, collected:

(D1): The even-numbered corners are permuted among themselves (and so
the odd-numbered corners are permuted among themselves).

(D2): The corresponding permutation in S8 has even parity.
(D3): Corners 1, 2, 3, 4 lie in a single plane.

Note that, given (D1), (D2) is quite fast to check.

Proof of Proposition 3.1. It remains to show that any state satisfying (D1)–(D3)
can be solved using only half turns. We will describe such a solution. (Note that
each condition is preserved under the action of D, so we may invoke these conditions
at every step of the solution.)

By (D1), corner 1 lies in one of the following positions:
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Solve it as follows:
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We can similarly solve corner 2:
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Then corner 3:
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By (D3), corner 4 must already be solved:
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Finally, by (D1) and (D2), corners 5, 6, 7, 8 must be in one of the following two
configurations:
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Let’s summarize what we’ve done. Set

(3.3) C = (Sev × Sod) ∩A8.

We have the following containments of subgroups of S8:

S8

Sev × Sod A8

C

D

(D1) characterizes states corresponding to Sev × Sod, while (D2) characterizes
states corresponding to A8; requiring both gives C. By (3.2) and (3.1), we have
D ≤ C. However, this containment is strict; for example,

τ = (1 3 7)

lies in C but not in D (i.e. x0.τ is not a half-turn state). To characterize D,
we introduced a further condition (D3). Proposition 3.1 says that these three
conditions suffice.

Remark 3.2. Unlike for (D2) and (D1), the subset of S8 corresponding to states
in (D3) do not form a subgroup. For example, x0.R

2 and x0.(1 2) satisfy (D3),
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but x0.R
2(1 2) doesn’t:
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For more in this direction, see §4.

3.1.2. Order of D.
Approach 1. We use Proposition 3.1. By (D3), corners 1, 2, 3, 4 lie in one of 12
planes. Within this plane, by (D1) there are 2 ways to place corners 1 and 3, and 2
ways to place corners 2 and 4. Having done this, by (D1) and (D2), there are only
2 possible ways to position corners 5, 6, 7, 8 (as in the proof of Proposition 3.1).
This gives

|D| = 12 · 2 · 2 · 2 = 96.

Approach 2. Recall the following containments:

S8

Sev × Sod A8

C

D

We know that

|Sev × Sod| = 4!4! = 576,

so it is enough to determine the indices [Sev × Sod : C] and [C : D].
Multiplication by a fixed 2-cycle in Sev × Sod defines a bijection between the

even permutations and the odd permutations in Sev × Sod, so

[Sev × Sod : C] = 2

and

|C| = 1

2
|Sev × Sod| =

1

2
(4!4!) = 288.

From Approach 1, we know that [C : D] = 288/96 = 3. But let’s give a more
conceptual proof.

As above, we consider multiplication by a fixed element in C that is not in D.
Recall that a 3-cycle was such an element; for ease of exposition, we use the explicit
choice τ = (1 3 7). Define a map (of sets)

cτ : C → Z/3Z

as follows. For σ ∈ C, the configuration of corners 1, 2, 3, 4 in x0.σ is one of the
following, up to re-orienting the entire cube:

or , ,
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Define cτ (σ) to be 0 in the first two, 1 in the third, and 2 in the fourth case. Then

cτ (στ) = cτ (σ) + 1.

This may be seen by checking the effect of τ on each configuration; up to rotation,
the following cover all cases:

τ7−→ τ7−→ τ7−→

τ7−→ τ7−→ τ7−→

τ7−→ τ7−→ τ7−→

τ7−→ τ7−→ τ7−→

In other words, cτ (σ) ∈ {0, 1, 2} is the unique element such that x0.στ
−i satisfies

(D3). Since σ, τ ∈ C, we know that x0.στ
−i satisfies (D1) and (D2) for any

i ∈ {0, 1, 2}. Hence it follows from Proposition 3.1 that cσ(σ) ∈ {0, 1, 2} is the
unique element for which στ−i ∈ D, or equivalently, σ ∈ Dτ i. We conclude that
cτ induces a bijection

(3.4)
cτ : D\C ∼−→ Z/3Z

Dτ i 7−→ i.

Remark 3.3. D is not normal in C.

3.2. Problem 2. Recall again the following containments:

S8

Sev × Sod A8

C

D

Since Sev × Sod corresponds to states characterized by (D1), the configuration of
the odd-numbered corners (say) serve as a label for its right cosets:

(3.5)
(Sev × Sod)\S8

∼−→ {config. of 4 corners}
(Sev × Sod)σ 7−→ config. of odds in x0.σ.



6 THE COSET METHOD FOR RUBIK’S CUBE: SOLUTION (DRAFT)

The right A8 cosets may be labeled by parity:

(3.6)
A8\S8

∼−→ Z/2Z
A8σ 7−→ parity of σ.

The equality (3.3) implies that the natural map

C\S8 → (Sev × Sod)\S8 ×A8\S8

is injective; by comparing size, we see that it’s even a bijection (though we won’t
need this). So by combining the labelings (3.5) and (3.6), we obtain a labeling of
C\S8:

(3.7)
C\S8

∼−→ {config. of 4 corners} × Z/2Z
Cσ 7−→ (config. of odds in x0.σ, parity of σ).

For example,

C(1 2 3 4) 7→

 , 1

 .

Now focus on the following containments:

S8

C

D

The idea is to combine the labelings (3.7) of C\S8 and (3.4) of D\C to produce
a labeling of D\S8. To do this, choose a section s of the natural surjection S8 �
D\S8:

S8

D\C D\S8

C\S8

s

For any coset in D\S8, represented by say Dσ for some σ ∈ S8, we have Cσ =
Cs(Cσ), so σs(Cσ)−1 ∈ C. We can therefore define a map

D\S8 → C\S8 ×D\C
Dσ 7→ (Cσ,Dσs(Cσ)−1),

which is easily seen to be injective, hence a bijection by comparing size. Combining
(3.7) and (3.4), we obtain a labeling

D\S8
∼−→ {config. of 4 corners} × Z/2Z× Z/3Z

depending on the choice of s.
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Concretely, the map

S8 −→ C

σ 7−→ σs(Cσ)−1

assigns a state in C to any state σ in a way that only depends on Cσ. In other words
(in terms of the labeling (3.7)), given any state, we want to use only its configura-
tion of odd-numbered corners and the parity of the corresponding permutation to
systematically produce a state whose labels are , 0

 .

There are many ways to do this (corresponding to the choice of s), each leading to
an easily-computable labeling for D\S8.

4. Another approach (sketch)

Recall from Remark 3.2 that (D3) is not a “group-like” condition. The problem
was that (D3) favored a single plane (the one containing 1, 2, 3, 4). We can correct
this as follows. Let

P ≤ S8

be the subgroup that takes any plane of 4 corners to another such plane. Then

(4.1) D ≤ P,
so any half-turn state satisfies the following strengthening of (D3):

(D3s): Every collection of 4 corners that lie in a single plane in the solved
state, lie in a single plane.

By (3.2), (3.1), and (4.1), we have

D ≤ (Sev × Sod) ∩A8 ∩ P.
Thus we have the following containment of subgroups:

S8

Sev × Sod A8 P

D

Proposition 3.1 implies that in fact

(4.2) D = (Sev × Sod) ∩A8 ∩ P,
so the corresponding conditions (D1)+(D2)+(D3s) provide another characteriza-
tion of half-turn states.

(D3s) is a rather strong condition. One can show that it implies (D2) (so
P ≤ A8), and that given (D3s), we only need the following weakening of (D1) to
find a half turn solution:

(D2w): Corner 1 lies in an odd-numbered corner position.
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In fact, this shows that D is an index 2 subgroup inside P , with the nontrivial coset
represented for example by any 90◦ re-orientation of the entire cube.

This last characterization of half turns ((D2w)+(D3s)) does not involve count-
ing parity. On the other hand, since there are 6 pairs of complement planes of 4
corners, checking (D3s) seems more time-consuming.

S8

A8
˜Sev × Sod

P Sev × Sod

D = P ∩ (Sod × Sev)

3 2

2
3

Group-like conditions have the following advantage: (4.2) implies that the nat-
ural map

D\S8 → (A8\S8)× ((Sev × Sod)\S8)× (P\S8)

is injective. It therefore suffices to name the coset spaces A8\S8, (Sev × Sod)\S8,
and P\S8 individually. However, it’s not clear to me how to do this for P\S8

without keeping track of the configuration of 6 planes of 4 corners.
One could hope that there is a subgroup Q ≤ S8 with a small index inside S8

(so that Q\S8 is easy to describe) so that we still have

D = (Sev × Sod) ∩A8 ∩Q.

S8

Sev × Sod A8 Q

D

3?

3


