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Abstract

This expository paper provides an overview of the structure theory of reductive groups,
first over algebraically closed ground fields and more briefly over arbitrary fields. Explicit
computations for several low-rank classical groups are given to illustrate the general theory.

1 Introduction

A systematic study of linear algebraic groups was initiated by C. Chevalley and A. Borel in the mid
1950s, a few decades after the classification of complex finite-dimensional semisimple Lie algebras
by W. Killing and E. Cartan. Since then, the Chevalley-Borel theory and its extensions by others
have played important roles in a number of algebraic areas, from finite simple groups to arithmetic
subgroups of Lie groups. For a brief historical overview, see for example the preface of [7].

This expository paper provides an overview of the structure theory of reductive groups, includ-
ing more briefly the case of non-algebraically closed ground fields, with several explicit examples
of low-rank classical groups. We only treat affine K-varieties, that is, reduced affine K-schemes of
finite type. The exposition is intended for an advanced undergraduate with minimal background
in algebraic geometry (an introductory course on varieties would suffice). Familiarity with the
classification of semisimple Lie algebras is helpful, and several parallels to that theory are pointed
out.

Section 3 contains an overview of the general theory over an algebraically closed field (the
“absolute” theory), with few proofs and skipping several developments from standard expositions.
Each subsection in Section 4 deals with one classical group (GL3(K), SL3(K), PSL3(K), Sp4(K),
SO5(K)) and explicitly works out the major points of the general theory as well as particular
phenomena of interest, such as isogeny. After a brief discussion in Section 5 of differences to the
theory that arise for arbitrary ground fields (the “relative” theory), Section 6 looks at several
low-rank orthogonal groups to highlight these differences.

Throughout, K denotes an algebraically closed field and k a subfield of K. Some standard texts
on this structure theory are [1], [4], [12]; more specific references are given in each section. Even
for some topics that are only briefly touched on, multiple references of varying depth have been
included to facilitate further study.
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2 Generalities on Linear Algebraic Groups

2.1 First Notions and Results

Concretely, a linear algebraic group over K is a (Zariski) closed subgroup of some GLn(K). A
more abstract definition free of embedding begins with a K-variety. An algebraic group over K
is a K-variety1 G with a compatible group structure: multiplication G × G → G and inversion
G→ G are morphisms of K-varieties. A morphism of algebraic groups is a group homomorphism
that is also a morphism of K-varieties. Write Hom(G,H) for the set of morphisms from G to H as
algebraic groups. An affine or linear algebraic group is one whose underlying variety is affine. It is
a theorem that every such algebraic group can be embedded as a closed subgroup of some GLn(K),
which justifies the adjective “linear” as well as the more concrete definition given above.

Example 2.1. Gm is the one-dimensional multiplicative group variety K×. As a K-variety, it is
an open set of A1 defined by T 6= 0, so it has coordinate ring K[T, T−1]. The group structure is
given by multiplication m : Gm×Gm → Gm induced from K, with inversion say ι : Gm → Gm. On
the coordinate rings, these induce, respectively, the comultiplication m∗ : K[T, T−1]→ K[T, T−1]⊗
K[T, T−1] given by T 7→ T ⊗ T and the antipode map ι∗ : K[T, T−1] → K[T, T−1] given by
T 7→ T−1. These induced maps are K-algebra homomorphisms, so by the contravariant equivalence
of categories between affine K-varieties and reduced finitely generated K-algebras, multiplication
and inversion are morphisms. Thus Gm is indeed a linear algebraic group. Note that Gm can
be embedded as a closed subgroup of a general linear group, as simply GL1(K) or in GL2(K) via
x 7→ diag(x, x−1).

For later use, we determine the morphisms ϕ : Gm → Gm. Under the above contravari-
ant equivalence of categories, each corresponds in particular to a K-algebra endomorphism ϕ∗ :
K[T, T−1] → K[T, T−1]. Since ϕ∗(T ) and ϕ∗(T−1) both lie in K[T, T−1] and multiply to 1,
considering the exponents of T in the product shows that ϕ∗(T ) = aTm for some a ∈ K× and
m ∈ Z, which uniquely determine ϕ∗. This corresponds to ϕ(x) = axm, which gives the endo-
morphisms of the underlying K-variety. That ϕ is a group homomorphism then forces a = 1, so
Hom(Gm,Gm) = {x 7→ xm : m ∈ Z}. Alternatively, we can directly use the compatibility of ϕ∗ with
comultiplication.

Let G be a linear algebraic group. Since G is a Noetherian topological space, it is the union
of finitely many irreducible components. Since G is a variety (and in particular reduced), it has

1In particular, a reduced K-scheme of finite type.
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some simple point. Then the transitive action of G on itself by left multiplication shows that every
point is simple, i.e. G is smooth.2 This implies that the irreducible components of G agree with
its connected components. The component containing the identity, called the identity component
and denoted G◦, is a finite-index normal subgroup of G. The theory therefore focuses on connected
groups.3

2.2 Jordan Decomposition, Unipotent and Diagonalizable Groups, Torus

An element x ∈ GLn(K) is called semisimple if it is diagonalizable as a matrix, nilpotent if xm = 0
for some m, and unipotent if x−I is nilpotent, where I is the identity matrix. By linear algebra, any
x ∈ GLn(K) has a unique (multiplicative) Jordan decomposition x = xsxu, where xs is semisimple,
xu is unipotent, and xsxu = xuxs. Then xs and xu are respectively called the semisimple and
unipotent part of x. In a linear algebraic group, there exists an analogous unique decomposition of
each element x into “semisimple” part xs and “unipotent” part xu that is independent of embedding,
i.e. such that, for any embedding ϕ into GLn(K), we have ϕ(xs) = ϕ(x)s and ϕ(xu) = ϕ(x)u. From
the uniqueness, one easily proves the preservation of the Jordan decomposition: if ϕ : G→ G′ is a
morphism of algebraic groups, then ϕ(x)s = ϕ(xs) and ϕ(x)u = ϕ(xu).

An element x is semisimple if x = xs and unipotent if x = xu. For a linear algebraic group
G, the subset of semisimple (resp. unipotent) elements is denoted Gs (resp. Gu). A group G is
unipotent if G = Gu. A group is diagonalizable if it is commutative and consists of semisimple
elements, or equivalently (since a commuting set of diagonalizible matrices can be simultaneously
diagonalized), if it is isomorphic to a closed subgroup of some diagonal group Dn(K) ∼= Gn

m. A
torus is a connected diagonalizable group, or equivalently, a group isomorphic to some Gn

m.

2.3 Reductive and Semisimple Groups

Any linear algebraic group G has a unique largest normal solvable subgroup, which is then auto-
matically closed. Its identity component is the largest connected normal solvable subgroup, called
the radical of G and denoted R(G). The unipotent part of R(G) is the largest connected normal
unipotent subgroup of G, called the unipotent radical and denoted Ru(G).

A connected group G is semisimple if R(G) is trivial and reductive if Ru(G) is trivial. A group
is thus semisimple if it has no non-trivial connected normal solvable subgroup, or equivalently
(by considering the central series) no non-trivial connected normal abelian subgroup. For example,
SLn(K) is semisimple while GLn(K) is only reductive. IfG is connected, thenG/R(G) is semisimple
and G/Ru(G) is reductive. This breaks the study of connected linear algebraic groups into that of,
for example, solvable groups, reductive groups, and their extensions.

The structure theory below applies to reductive linear algebraic groups (or simply called reduc-
tive groups). The reader is encouraged to read the general theory in Section 3 together with the

2In a more general definition of algebraic groups that allows non-reduced schemes, it can be shown that an algebraic
group is smooth if and only if it is reduced; see [7].

3For linear algebraic groups, the adjective “connected” is preferred over “irreducible” because the latter also
applies to representations.
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explicit examples in Section 4.

3 Structure Theory over Algebraically Closed Fields

3.1 Maximal Torus, Characters and Cocharacters, Roots, Weyl Group

From here on, G will denote a reductive group. As with Lie algebras, the structure theory of
reductive groups uses root systems arising from adjoint action. The role of Cartan subalgebra for
reductive Lie algebras will be played here by a maximal torus, a torus in G contained in no other
torus. Such a maximal torus exists by dimensional reason, and it can be shown that all maximal
tori are conjugate. The dimension of maximal tori is therefore well defined, called the rank of G.
We fix a maximal torus T throughout.

Let X∗(T ) = Hom(T,Gm) and X∗(T ) = Hom(Gm, T ), called the character module and cochar-
acter module, respectively. Since T is fixed, we often write X∗ and X∗. An element of X∗ (resp.
X∗), called a character (resp. cocharacter, one-parameter subgroup, or 1-psg) of T , is often denoted
α (resp. λ). Because T ∼= Gn

m for some n, X∗ and X∗ are free abelian of rank n. Composing a
cocharacter λ : Gm → T and a character α : T → Gm yields a morphism Gm → Gm, which, as
we saw in Example 2.1, must have the form x 7→ xm for some m ∈ Z. We may therefore define
〈 , 〉 : X∗ ×X∗ → Z by (α ◦ λ)(x) = x〈α,λ〉. It is easy to see that this is a dual pairing of X∗ and
X∗.

Consider the adjoint action (i.e. conjugation) of T on g. By the preservation of the Jordan
decomposition, AdT is diagonalizable. We therefore have a decomposition g =

⊕
α∈X∗ gα, where

gα is the space of X ∈ g with tX = α(t)X for all t ∈ T . A root is a nonzero character α for which
gα 6= 0; then gα is a root space. The set of roots is denoted Φ. The fixed-point space, corresponding
to the zero character, is the centralizer cg(T ) of T , so g = cg(T )⊕ (

⊕
α∈Φ gα). It can be shown that

dim gα = 1 for α ∈ Φ.
The Weyl group of G (with respect to T ) is defined to be W = NG(T )/CG(T ), the normalizer

of the torus modulo its centralizer. It can be shown that this is a finite group. For a maximal
torus T of a reductive group G, it can be shown that CG(T ) = T . The reader may therefore
encounter the definition of the Weyl group in this setting as simply NG(T )/T . By the conjugacy
of maximal tori, the Weyl group of a linear algebraic group is determined up to isomorphism. For
σ ∈ W , represented by say n ∈ NG(T ), conjugation by n is a morphism T → T depending only
on σ ∈ W . Given a character α : T → Gm, let σα be the character obtained by composing with
this conjugation: (σα)(t) = α(n−1tn). This defines an action of W on X∗, which is easily seen to
permute Φ. Similarly, W acts on X∗ by (σλ)(x) = nλ(x)n−1. Note the direction of conjugation,
which ensures that 〈σα, σλ〉 = 〈α, λ〉 for σ ∈W , α ∈ X∗, λ ∈ X∗.

3.2 Root System

Identifying X∗, X∗ with lattices in R⊗X∗, R⊗X∗, respectively, we view Φ as a subset of R⊗X∗. The
dual pairing of X∗ and X∗ extends to that of R⊗X∗ and R⊗X∗, denoted again by 〈 , 〉. As well, the
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action of W on X∗ and X∗ extends to a linear action on R⊗X∗ and R⊗X∗, respectively. A major
result of the structure theory over algebraically closed fields is the following: if G is semisimple,
then Φ is a reduced root system in R ⊗ X∗ with rank that of G and Weyl group isomorphic to
W . More generally, if G is reductive, then its roots Φ can be identified with those of its derived
group (G,G), which is semisimple, and Φ is a root system in the subspace of R ⊗ X∗ it spans;
see Section 3.5 for a more precise relation between the combinatorial data of G and (G,G). Here,
we briefly recall without proof the definitions and basic properties of a root system and associated
combinatorial data; for details, see Section 6.1 of [2].

Let E be a finite-dimensional real vector space. A refection relative to α ∈ E, α 6= 0, is a
linear transformation of E sending α 7→ −α and fixing pointwise a subspace of codimension one.
Note that, unlike an orthogonal (i.e. Euclidean) reflection, this is not uniquely determined by α. A
(abstract) root system in E is a subset Ψ satisfying: (1) Ψ is finite, spans E, and 0 /∈ Ψ; (2) if α ∈ Ψ,
there exists a reflection rα relative to α leaving Ψ stable; (3) for α, β ∈ Ψ, rα(β)− β ∈ Zα. Since
Ψ spans E, a reflection rα satisfying (2) is uniquely determined, so that the integrality condition
(3) makes sense. A root system Φ is called reduced4 if, for every α ∈ Ψ, we have cα ∈ Ψ if and
only if c = ±1. The dimension of E is called the rank of Ψ. Let E∗ be the dual space of E, with
dual pairing 〈 , 〉. If α ∈ Ψ, there exists a unique α∨ ∈ E∗ such that rα(x) = x − 〈x, α∨〉α for
x ∈ E, which in particular implies the identity 〈α, α∨〉 = 2. The subset Ψ∨ = {α∨ : α ∈ Φ} of
E∗ is the set of coroots. The (abstract) Weyl group of Ψ is the group generated by rα, α ∈ Ψ. It
can be shown that the Weyl group is finite, so that we may average any inner product on E to
obtain one invariant under W . It can be shown that this makes rα into orthogonal reflections. A
root system Ψ is called irreducible if it cannot be written as a proper disjoint union Ψ = Ψ1 ∪Ψ2

such that every root in Ψ1 is orthogonal to every root in Ψ2; irreducibility is in fact independent
of the inner product chosen. A base of Ψ is a subset ∆ = {αi} that is a basis of E and such that
every α ∈ Ψ can be written α =

∑
ciαi for integers ci of the same sign. The elements of a base are

called simple roots. Roots α for which ci ≥ 0 (resp. ci ≤ 0) comprise the set of positive roots (resp.
negative roots), denoted Ψ+ (resp. Ψ−).

For a reductive group G, R⊗X∗ and R⊗X∗ with the extended dual pairing play the role of E
and E∗, respectively. For α ∈ Φ, it can be shown that a certain element σα of its Weyl group W
act as a reflection relative to α, and that the coroots Φ∨ in fact lie in X∗. It is often convenient to
take as above inner products on R⊗X∗ and R⊗X∗ that are invariant under W , called admissible
inner products, which then make σα, α ∈W , into orthogonal reflections.

We return to the classification of semisimple groups in Section 3.4.

3.3 Spherical Apartment, Parabolic Subgroups, and Borel Sugroups

A Borel subgroup of a linear algebraic group is a maximal connected solvable subgroup, which
exists by dimensional reason. The set of Borel subgroups containing a torus T is denoted BT . A
parabolic subgroup is a subgroup P such that G/P is a projective variety. Standard expositions

4Although some authors include this in the definition of a root system, we allow non-reduced root systems since
they arise in the relative theory; see Section 5.2
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introduce these subgroups early and use them throughout the structure theory. Here we only note
the following major results: all Borel subgroups are conjugate, and Borel subgroups are precisely
the minimal parabolic subgroups. Note that R(G) is the identity component of the intersection of
all Borel subgroups; this is a connected normal solvable subgroup, and every such group is contained
in this subgroup by the conjugacy of Borel subgroups. We introduce these subgroups using the
spherical apartment.5

The spherical apartment of G is R⊗X∗ equipped with hyperplanes Hα = {λ ∈ R⊗X∗ : 〈α, λ〉 =
0} for α ∈ Φ. A cocharacter λ ∈ R ⊗ X∗ is called regular if 〈α, λ〉 6= 0 for all α ∈ Φ, i.e. if it
does not lie on any Hα. The connected components of the complement of

⋃
Hα are called Weyl

chambers. Thus regular cocharacters are precisely those lying in some Weyl chamber.
Note that each hyperplane Hα partitions R ⊗ X∗ into three parts depending on the sign of

〈α, λ〉: zero on Hα itself, and positive or negative on each side. The cocharacters lying in a given
Weyl chamber is characterized by these signs, either positive or negative, for the various roots.
More generally, the spherical apartment is partitioned into facets, maximal subsets of cocharacters
having the same sign for every root. In particular, the origin is a facet of dimension zero, being
the only cocharacter lying on every hyperplane, while Weyl chambers are the facets of maximal
dimension.

For each root α, it can be shown that there exists a morphism uα : Ga → G such that
tuα(x)t−1 = uα(α(t)x) for all t ∈ T , and that this uniquely determines the image, denoted Uα,
which is a one-dimensional unipotent subgroup. Moreover, Uα is the unipotent part of a Borel
subgroup of Gα containing T . To every λ ∈ R⊗X∗(T ), associate a subgroup

Pλ = 〈T,Uα : α ∈ Φ, 〈α, λ〉 ≥ 0〉

of G, which is in fact parabolic. This depends only on the facet F containing λ, so we may define
PF . If facet F ′ lies in the boundary of F , then 〈α, F ′〉 ≥ 0 whenever 〈α, F 〉 ≥ 0, so PF ⊂ PF ′ .
It can be shown that all parabolic subgroups containing T arise in this way. Thus the spherical
apartment neatly captures the containment relations among these parabolics. In particular, Borel
subgroups are the minimal parabolic subgroups, and P0 = 〈T,Uα : α ∈ Φ〉 = G is the maximal
parabolic subgroup.

Let λ be a regular cocharacter, and set Φ+ = {α ∈ Φ : 〈α, λ〉 > 0} and Φ− = {α ∈ Φ : 〈α, λ〉 <
0}. This determines a unique subset ∆ ⊂ Φ+ that is a base of Φ and with respect to which Φ+

and Φ− are the positive and negative roots, respectively. Note that Φ+ and hence ∆ depend only
on the Weyl chamber containing λ. Conversely, starting with a base ∆, it can be shown that there
exists a unique Weyl chamber such that 〈α, λ〉 > 0 for every α ∈ ∆ and λ in the Weyl chamber,
which gives the inverse correspondence. We thus have bijections between BT , the Weyl chambers,
and the choice of positive roots or equivalently of a base of Φ.

Let B ∈ BT be given, and suppose B corresponds to a Weyl chamber WC. Then −WC is
another Weyl chamber; let B− ∈ BT be the corresponding Borel subgroup. This is the unique
Borel subgroup such that B ∩B− = T , called the opposite Borel subgroup of B.

5For a gentle introduction to spherical and affine apartments in the context of p-adic Chevalley groups, see [9].
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For semisimple groups, Φ spans R ⊗ X∗ and Φ∨ spans R ⊗ X∗. This is no longer true for
general reductive groups. All the geometric information of the spherical apartment is retained in
the reduced spherical apartment, which is the same data intersected with the span of Φ∨ in R⊗X∗.

Because of the bijection between the set of Weyl chambers and BT , W also acts simple transi-
tively (by conjugation) on BT .

3.4 Isogenies, Fundamental Group, and Classification of Semisimple Groups

The classification of semisimple groups is analogous to that of semisimple Lie algebras. Recall that
every (reduced) root system is a direct sum of (reduced) irreducible root systems, of which there
are four infinite families and five exceptional types. Here we introduce the fundamental group.
These two data classify semisimple groups.

An isogeny is a surjective homomorphism with finite kernel. If G → H is an isogeny, then we
say that G is isogenous to H.6 An algebraic group is called almost simple if it is non-abelian and
has no non-trivial closed connected normal subgroup.7

For G semisimple, let Gi be the minimal closed connected normal subgroups of positive dimen-
sion. Then it can be shown that Gi are almost simple, and that G = G1 · · ·Gn with the product
morphism G1×· · ·×Gn → G an isogeny. Moreover, these Gi correspond to the irreducible compo-
nents of the root system Φ of G. Thus G is almost simple if and only if Φ is irreducible. In this case,
on both R⊗X∗ and R⊗X∗, the admissible inner product is unique up to scalar multiplication. In
particular, the angles between and relative lengths of roots and coroots are unambiguously defined,
so figures of Φ and of the spherical apartment can be canonically associated with G.

The root lattice Q is the subgroup of X∗ generated by Φ, often viewed as a lattice in R⊗X∗.
The weight lattice (or lattice of abstract weights) is P = {x ∈ R⊗X∗ : 〈x,Φ∨〉 ⊂ Z}. Note that the
root system alone determines Q and P ; the fundamental group of Φ is P/Q. For G semisimple, Q
is a full-rank lattice in R⊗X∗, so P/Q is finite. It can be shown (for example using representation
theory) that we have the containment Q ⊂ X∗ ⊂ P , leaving only finitely many possibilities for
X∗. The fundamental group of G is π(G) = P/X∗. A semisimple group G is called simply-
connected if X∗ = P (i.e. π(G) = 1) and adjoint if X∗ = Q. The classification theorem gives a
bijection between the set of isomorphism classes of almost simple linear algebraic groups and the
set of possible irreducible root systems Φ together with a possible fundamental group, viewed as a
quotient of the fundamental group of Φ.

Except for Dn, n ≥ 6 even, a direct computation shows that the fundamental group of an
irreducible root system is cyclic, so Φ and the order of π(G) suffice to determine G. For Dn,
n ≥ 6 even, we have P/Q ∼= Z/2Z × Z/2Z, so that for each such n, there are two non-isomorphic
almost simple groups with root system Dn and fundamental group of order 2. For more details
on this classification, see Sections 32 and 33 of [4], which outline the construction of an algebraic
group isomorphism given an isomorphism of the classifying data, as well as the existence of groups

6Note that this is not a symmetric relation. For abelian varieties, which we are not concerned with here, isogeny
does turn out to be symmetric.

7Some authors use the term simple. It can be shown that if G is almost simple, then G/Z(G) is a simple group.
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corresponding to certain data. Chevalley gave a construction for semisimple groups of adjoint type
over an arbitrary field8, which was generalized by Steinberg to arbitrary fundamental group; for
details of either construction, see Part VII of [3].

Isogenous groups have the same root system but different character modules, hence different
fundamental groups. Conversely, all semisimple groups with a given root system may be obtained
by isogenies from the simply-connected form, as quotients of the simply-connected form by various
central subgroups. In particular, for any semisimple group G, there exists a simply-connected form
G′ and an adjoint form G′′ with the same root system as G and with isogenies G′ → G→ G′′.

3.5 Reductive Groups and their Derived Group

Let G be reductive and T a maximal torus of G. It can be shown from the structure theory that
G = (G,G)R(G), so that the derived group (G,G) is semisimple. Moreover, R(G) = (Z(G))◦

is a central torus with a finite intersection with (G,G). A reductive group thus differs from its
semisimple derived group only in a nontrivial central torus. In fact, it can be shown that Z(G) =⋂
α∈Φ kerα, and from this one can relate their structures as follows.

For A ⊂ X∗, let

A⊥ = {λ ∈ X∗ : 〈α, λ〉 = 0 for all α ∈ A}
Ã = {α ∈ X∗ : Zx ∩A 6= {0}}.

Then (G,G) has the following maximal torus and character and cocharacter modules:

T ′ = 〈Imα∨ : α ∈ Φ〉

X∗(T ′) ∼= X∗(T )/(Q∨)⊥, X∗(T
′) ∼= (̃Q∨).

Since R⊗Q is the orthogonal complement of R⊗ (Q∨)⊥, the first isomorphism maps Φ injectively
into X∗(T ′). We may therefore identify Φ with the root system Φ′ of (G,G) (when restricted to
their span). For further details and proofs, see Sections 8.1.6-9 of [12]. See Section 4.2 below for
the example of SL3(K), the derived group of GL3(K).

3.6 Root Datum and Classification of Reductive Groups

Since G and (G,G) have the same root system, they also have the same coroot system and reduced
spherical apartment. In particular, these data are not enough to classify reductive groups. Note
that, whereas a root system spans the ambient space, the root lattice Q may not be full-rank in
X∗ for a general reductive group. This motivates one to look at not only the span of Φ but all of
R ⊗ X∗. The root datum of a reductive group G is the quadruple (X∗, X∗,Φ,Φ

∨) with the dual
pairing X∗ × X∗ → Z, and bijection Φ → Φ∨, α 7→ α̌. It can be shown that this satisfies the
axioms of an abstract root datum, which generalizes root systems, again with Weyl group that of G
with respect to T ; see Section 7.4 of [12]. It is a theorem of Chevalley that reductive groups over
algebraically closed fields are classified by their root datum.

8in fact group scheme over Z
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3.7 An Outline of Standard Expositions

This section outlines a more standard exposition and ties up some loose ends. Some additional
algebraic geometry will be assumed (in particular, the completeness of projective varieties and basic
properties of complete varieties).

3.7.1 Commutative Groups and Connected Solvable Groups

From the Jordan decomposition, the following structure theorem of commutative linear algebraic
groups quickly follows: if G is connected and commutative, then Gs, Gu are closed connected
subgroups, and G ∼= Gs × Gu. After establishing results on diagonalizable groups and tori, the
structure theory proceeds to nilpotent and solvable groups. The main result here is the following:
if G is connected and solvable, then Gu is closed connected normal subgroup of G that contains
(G,G), maximal tori of G are conjugate under G∞ :=

⋂
CiG (where CiG is the descending central

series of G), and G = T n Gu for any maximal torus T . Moreover, Gs is a subgroup if and only
if G is nilpotent if and only if there is a unique maximal torus, in which case G ∼= Gs × Gu and
Gs = T .

Another important result about solvable groups is the Lie-Kolchin Theorem, which states that
a nonempty connected solvable subgroup of GL(V ) has a common eigenvector in V , or equivalently
that it can be triangularized. This is the analogue of Lie’s Theorem for Lie algebras.

3.7.2 Borel and Parabolic Subgroups Containing a Maximal Torus

Recall that Borel subgroups are maximal connected solvable subgroups and that parabolic sub-
groups are closed subgroups P such that G/P is projective. Borel subgroups play an important
role in standard expositions, connecting the structure theory of solvable groups above to that of
reductive groups.

The key algebro-geometric input here the Borel fixed point theorem, which states that the
action of a connected solvable algebraic group on a complete variety has a fixed point. The main
results about Borel and parabolic subgroups are as follows: all Borel subgroups are conjugate, as
are all maximal tori; a closed subgroup P is parabolic if and only if G/P is complete if and only
if P contains a Borel subgroup; the union of all Borel subgroups is G; parabolic subgroups are
self-normalizing, i.e. NG(P ) = P .

In particular, for any fixed Borel subgroup B, we may identify G/B with the set B of all Borel
subgroups, as follows. By the conjugacy theorem, G acts transitively on B by conjugation. Consider
the orbit map G→ B given by x 7→ xBx−1. Since B is self-normalizing, i.e. its stabilizer is B itself,
we have a bijection ϕ : G/B → B given by xB 7→ xBx−1. Moreover, since yxB 7→ y(xBx−1)y−1,
the natural action of G on G/B by left multiplication makes ϕ equivariant.
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3.7.3 Centralizers of Tori and Roots of a Reductive Group

This subsection outlines the argument for the heart of the structure theory. It may be skipped on
the first reading.

Recall that the adjoint action of T yields a decomposition

g = cg(T )⊕ (
⊕
α∈Φ

gα). (1)

Let I(T ) be the identity component of the intersection of all Borel subgroup containing T . We may
similarly write

g = L(I(T ))⊕ (
⊕
α∈Ψ

g′α), (2)

where L denotes Lie algebra. It can be shown that CG(T ) ⊂ I(T ), so that Ψ ⊂ Φ.
By using I(T ), this second decomposition allows one to appeal to earlier results of solvable

groups and Borel subgroups. Important as well are the following categorization of tori: a torus S is
regular9 if it lies in finitely many Borel subgroups, and singular otherwise. It is shown that a torus
S is regular if and only if CG(S) is solvable, again opening the use of results on Borel subgroups. A
cocharacter λ is regular if its image λ(Gm) ⊂ T is regular; this is shown to agree with the definition
previously given.

Let T be a maximal torus of G. Let BT be the set of Borel ubgroups containing T . By the
conjugacy theorem, NG(T ) acts on BT by conjugation. It can be shown that CG(T ) lies in every
such Borel, so acts trivially on BT . We therefore have a well-defined action of W on BT . This is
in fact simple transitive, so that |BT | = |W |, which is finite. Thus T is regular.

These results are used to first examine the structure of reductive groups G of semisimple rank
1, meaning that G/R(G) is semisimple of rank 1. First, it is shown that |W | = 2. Since semisimple
rank 1 easily forces |W | ≤ 2. The other inequality takes more work and relies on a geometric
lemma. Let T be a torus in GL(V ), with a cocharacter λ : Gm → T . Then T acts on P(V ), as does
Gm, via λ, and it is shown that these two actions have the same fixed points if λ is semiregular.
By using the completeness of P(V ) to extend the action of Gm, one finds two distinct fixed points
of λ(Gm), hence of T . This lemma is applied to the action of a maximal torus T on G/B: using
the completeness of the latter to embed it in some P(V ), we obtain that T has two fixed points of
G/B and so |W | = |BT | ≥ 2. Hence |W | = 2. Much of the structure of G can be shown from here.
In particular, if B and B′ are the two Borels containing T , then B ∩B′ = T .

For a general reductive group G, let Tα = (kerα)◦ for α ∈ Ψ. Then its centralizer Gα = CG(Tα),
with maximal torus T , is shown to be reductive of semisimple rank 1. By the structure theory for
such groups, Gα has roots {±α} with Weyl group of order two generated by rα sending α 7→ −α.
Putting together the various Gα yields information about Ψ in the second decomposition. Finally,
it is shown that I(T ) = T for G reductive, so that Φ = Ψ and the two decompositions coincide. In

9Some authors use the term semiregular, but the definitions agree for reductive groups.
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particular, this shows that dim gα = 1 and that Φ = −Φ. By the natural inclusion W (Gα, T ) ↪→W ,
we have rα ∈ W . It is this element that acts on R ⊗X∗ as a reflection relative to α. A proof of
the integrality axiom completes the proof that Φ is a root system.

3.7.4 Bruhat Decomposition

For a fixed Borel B, as usual G is a disjoint union of its double cosets. What it surprising is
that representatives of the Weyl group form a set of representatives for these double cosets. This
is the Bruhat decomposition: G =

∐
w∈W BwB. Tits later reformulated the proof axiomatically

by introducing the notion of a BN-pair (or a Tits system), which unified the proof for .... This
notion has been generalized to give other purely combinatorial structure theories. For example, the
discover of a certain BN-pair in p-adic semisimple groups by Iwahori and Matsumoto led to the
Bruhat-Tits theory for p-adic reductive groups. For an introduction to this theory, see [9].

4 Examples: Classical Groups over Algebraically Closed Fields

Each subsection here discusses one classical group, working out explicitly the major points of the
absolutely structure theory above. Although we treat low-rank examples, most of the discussion
easily generalizes to arbitrary rank.

4.1 GL3(K)

The general linear group GLn(K) is the group of invertible n×n matrices with entries in K, or more
abstractly the automorphism group of a fixed n-dimensionalvector space over K. Since GLn(K)
is a Zariski-open subset of the n2-dimensional affine space Mn(K) of all n × n matrices, its Lie
algebra gln(K) can be identified, after translating I to the zero matrix, with Mn(K).

Where similar computations occur in subsequent examples, they are carried out here for GL3(K)
in greater detail.

4.1.1 Maximal Torus, Character and Cocharacter Modules, Roots

We first show that GL3(K) is reductive. Note that the subgroup of upper triangular matrices is a
Borel subgroup; it is connected and solvable, and of maximal dimension since any connected solvable
group can be triangularized by Lie-Kolchin. Conjugation by the permutation matrix corresponding
to (1 3) takes this to the lower triangular matrices, so R(GL3(K)) lies in their intersection, the
diagonal matrices D3(K). Normality easily forces the diagonal entries to be equal, so R(GL3(K))
is contained in the subgroup of scalar matrices, and in fact equals because the latter is a closed
connected solvable normal subgroup. Then Ru(GL3(K)) = {I}, as desired.

GL3(K) has rank 3: the subgroup D3(K) ∼= G3
m of diagonal matrices is a torus, and in fact

maximal. Fix this maximal torus
T =

( ∗
∗
∗

)
.
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Here and throughout, we specify subgroups with asterisks for nonzero entries, implicitly intersected
with the group. For t ∈ T , we write ti for the (i, i)-th entry.

Recall that CG(T ) = T for any maximal torus T of a reductive group G. Here, this is easy to
check. Clearly T ⊂ CG(T ) since T is commutative. Suppose a ∈ CG(T ), so tat−1 = a for all t ∈ T .
Equating the (i, j)-th entry, we have tit

−1
j aij = aij for all ti, tj ∈ K×, so aij = 0 if i 6= j, which

shows the opposite inclusion.
Define morphisms αi : T → Gm by αi(t) = ti, i.e.

α1(
( t1

t2
t3

)
) = t1, α2(

( t1
t2
t3

)
) = t2, α3(

( t1
t2
t3

)
) = t3.

Define λi : Gm → T , where λi(x) is diagonal with x in the (i, i)-th entry and 1 elsewhere, i.e.

λ1(x) =
(
x

1
1

)
, λ2(x) =

(
1
x

1

)
, λ3(x) =

(
1

1
x

)
.

Then X∗ (resp. X∗) is free abelian on αi (resp. λi), with dual pairing 〈αi, λj〉 = δij , the Kronecker
delta.

Write for example (aij) for the matrix with (i, j)-th entry aij . The adjoint action of T on g is( t1
t2
t3

)
(aij)

( t1
t2
t3

)−1

= (tit
−1
j aij),

so the generalized eigenvectors are Eij , the matrix with 1 in (i, j)-th entry and 0 elsewhere, with
character αi − αj :

tEijt
−1 = tit

−1
j Eij = (αi − αj)(t)Eij .

The roots are the nonzero characters, so we have Φ = {αi − αj : i 6= j}, with one-dimensional root
spaces gαi−αj = 〈Eij〉. The corresponding one-dimensional unipotent subgroups are obtained by
exponentiating the root spaces. For example, since

(xE12)2 =
(

0 x
0

0

)2
= 0 ⇒ exp(xE12) = I + xE12 =

(
1 x

1
1

)
,

we set

uα1−α2 : Ga → GL3(K)

x 7→
(

1 x
1

1

)
.

Then

tuα1−α2(x)t−1 =
( t1

t2
t3

)(
1 x

1
1

)( t−1
1

t−1
2

t−1
3

)
=

(
1 t1t

−1
2 x
1

1

)
= uα1−α2((α1 − α2)(t)x),

as desired, so

Uα1−α2 = uα1−α2(Ga) =
(

1 ∗
1

1

)
.

Table 1 shows the roots and the corresponding root spaces and one-dimensional unipotent sub-
groups. Each subalgebra (resp. subgroup) consists of all elements in gl3(K) (resp. GL3(K)) of the
given form.
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α gα Uα −α g−α U−α

α1 − α2

(
0 x

0
0

) (
1 x

1
1

)
α2 − α1

(
0
x 0

0

) (
1
x 1

1

)
α2 − α3

(
0

0 x
0

) (
1

1 x
1

)
α3 − α2

(
0

0
x 0

) (
1

1
x 1

)
α1 − α3

(
0 x

0
0

) (
1 x

1
1

)
α3 − α1

(
0

0
x 0

) (
1

1
x 1

)
Table 1: Roots, root spaces, and one-dimensional unipotent subgroups of GL3(K)

4.1.2 Weyl Group

A monomial matrix is a matrix with exactly one nonzero entry in each row and column.

Proposition 4.1. NG(T ) is the group of monomial matrices.

Proof. Suppose a = (aij) normalizes T . Write mij for the minor determinants of a, so adj(a) =
((±1)i+jmji). Since adj(a) is a scalar multiple of a−1, we have at adj(a) ∈ T for any t ∈ T . Then

(at adj(a))ij =
∑
k

(at)ik(adj(a))kj =
∑
k

tkaik(±1)k+jmjk. (3)

If i 6= j, then this must vanish for all values of t1, t2, t3, so aikmjk = 0 for each k = 1, 2, 3.
Assume a has two nonzero values in the same row or column, say a11, a21 6= 0 after relabeling

and transposing if necessary. Then a11mj1 = 0 for j 6= 1 and a21mj1 = 0 for j 6= 2, so mj1 = 0 for
all j = 1, 2, 3. Thus adj(a) is not invertible, a contradiction. Since a is invertible, this forces a to
be a monomial matrix.

Conversely, let a be a monimial matrix. If aik 6= 0, then for any j 6= i, the (i, j)-th minor
contains a whole row of 0’s (since ail = 0 for all l 6= k), so mij = 0. Thus by (3), a normalizes
T .

We already checked that CG(T ) = T . Every monomial matrix can be scaled with an appropriate
diagonal matrix to a unique permutation matrix (monomial matrix with nonzero entries 1), so the
Weyl group W = NG(T )/CG(T ) is naturally identified with the group of permutation matrices.
The natural action on the standard basis, identified with {1, 2, 3}, yields the isomorphism W ∼= S3.
Concretely, (

1
1

1

)
←→ id,

(
1

1
1

)
←→ (1 2),

(
1

1
1

)
←→ (1 3),(

1
1

1

)
←→ (2 3),

(
1

1
1

)
←→ (1 2 3),

(
1

1
1

)
←→ (1 3 2).

4.1.3 Action of the Weyl Group

Let i 6= j. The singular tori Tα = (kerα)◦ of codimension 1 in G are

Tαi−αj = Tαj−αi = {t ∈ T : ti = tj}.
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We showed earlier that CG(T ) = T . By an analogous argument,

Gαi−αj := CG(Tαi−αj ) = {(akl) ∈ GL3(K) : akl = 0 if k 6= l and (k, l) 6= (i, j), (j, i)}.

We will check that the example

Gα1−α2 = Gα2−α1 =
( ∗ ∗
∗ ∗
∗

)
has the structure claimed in the general theory; calculations for other Gα will be similar. This is
isomorphic to GL2(K) × GL1(K). By an argument similar to the one used for G, R(Gα1−α2) is
the subgroup of diagonal matrices t with t1 = t2. This is S × GL1(K) in the above isomorphism,
where S is the subgroup of scalar matrices in GL2(K), so Gα1−α2/R(Gα1−α2) ∼= PGL2(K). Thus
Gα1−α2 is reductive of semisimple rank 1. By the same calculation as for GL3(K), Gα1−α2 has
roots ±(α1 − α2). Since

NGα1−α2
(T ) = NG(T ) ∩Gα1−α2 =

( ∗
∗
∗

)
∪
( ∗
∗
∗

)
,

Gα1−α2 has Weyl group {id, σα1−α2} of order 2 represented by
(

1
1

1

)
and nα1−α2 =

(
1

1
1

)
.

There are two standard Borels,

Bα1−α2 =
( ∗ ∗
∗
∗

)
, B′α1−α2

=
( ∗
∗ ∗
∗

)
,

intersecting in T . Note that Uα1−α2 is the unipotent part of Bα1−α2 . The unipotent part of each
Borel subgroup is isomorphic to Ga; for example, we have the isomorphism Ga → Bα1−α2 given by

x 7→
(

1 x
1

1

)
. We have

n−1
α1−α2

tnα1−α2 =
(

1
1

1

)( t1
t2
t3

)(
1

1
1

)
=
( t2

t1
t3

)
.

Composing with this conjugation, σα1−α2 acts on X∗ by fixing α3 and exchanging α1 and α2, so the
action on R⊗X∗ is given by c1α1 +c2α2 +c3α3 7→ c2α1 +c1α2 +c3α3. This sends α1−α2 7→ α2−α1

and fixes pointwise the codimension-one subspace R(α1 +α2)⊕Rα3, so σα1−α2 acts as a reflection
relative to α1 − α2. Similarly, σα1−α2 acts on R⊗X∗ by c1λ1 + c2λ2 + c3λ3 7→ c2λ1 + c1λ2 + c3λ3.

Since Φ is irreducible (of type A2), there exists a unique (up to scalar multiplication) admissible
inner product on R ⊗X∗ and on R ⊗X∗. Figure 1 shows Φ under this inner product. Note that
σα1−α2 is then an orthogonal reflection.

For x = c1α1 + c2α2 + c3α3,

x− 〈x, λ1 − λ2〉(α1 − α2) = x− (c1 − c2)(α1 − α2) = c2α1 + c1α2 + c3α3 = σα1−α2(x),

so (α1 − α2)∨ = λ1 − λ2. Other coroots are similar, so Φ∨ = {λi − λj : i 6= j}. The span of Φ∨ in
R⊗X∗ is {c1λ1 + c2λ2 + c3λ3 : c1 + c2 + c3 = 0}.
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α1 − α3α3 − α1

α2 − α3

α3 − α2

α2 − α1

α1 − α2

Figure 1: Root system of GL3(K)

λ1 − λ3λ3 − λ1

λ2 − λ3

λ3 − λ2

λ2 − λ1

λ1 − λ2

Hα1−α2

Hα1−α3

Hα2−α3

( ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

) ( ∗ ∗ ∗
∗ ∗
∗

)

( ∗ ∗
∗ ∗ ∗
∗

)( ∗
∗ ∗ ∗
∗ ∗

)

( ∗
∗ ∗
∗ ∗ ∗

)

( ∗ ∗
∗
∗ ∗ ∗

) ( ∗ ∗ ∗
∗
∗ ∗

)

( ∗ ∗ ∗
∗ ∗ ∗
∗

)
( ∗ ∗
∗ ∗ ∗
∗ ∗

)
( ∗
∗ ∗ ∗
∗ ∗ ∗

)

( ∗ ∗
∗ ∗
∗ ∗ ∗

)
( ∗ ∗ ∗
∗
∗ ∗ ∗

)
( ∗ ∗ ∗
∗ ∗
∗ ∗

)

Figure 2: Coroots, spherical apartment, and associated parabolic subgroups of GL3(K)
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We now describe the spherical apartment. Since 〈αi − αj , c1λ1 + c2λ2 + c3λ3〉 = ci − cj , the
hyperplanes are Hαi−αj = Hαj−αi = {

∑
ciλi : ci = cj} and the regular cocharacters are

∑
ciλi with

ci all distinct. Figure 2 shows the (reduced) spherical apartment with the coroots overlaid and the
associated parabolic subgroup shown for each facet. The three hyperplanes (dotted) partition the
regular cocharacters into six Weyl chambers. For example, let F be the Weyl chamber containing
λ1 − λ3. Then F is the set of characters λ satisfying

〈λ, α1 − α2〉, 〈λ, α2 − α3〉 > 0.

Note that these automatically imply 〈λ, α1−α3〉 > 0. This is a restatement of the simple geometric
fact that, in the figure, a cocharacter lying below Hα1−α2 and above Hα2−α3 automatically lies to
the right of Hα1−α3 . In addition to the Weyl chambers, there are six facets of dimension one (in the
reduced spherical apartment), given by the halves (separated by the origin) of each hyperplane, and
one facet of dimension zero, the origin. The associated parabolic subgroups are easily calculated
using the Uα determined earlier; for example,

PF = 〈T,Uα1−α2 , Uα2−α3 , Uα1−α3〉 =
( ∗ ∗ ∗
∗ ∗
∗

)
.

As we noted earlier, this is a Borel subgroup, as it should be since F is a maximal facet.
The action of W by conjugation on BT and on the set of parabolic subgroups containing T can

also be seen through spherical apartment. For example, σα1−α3 acts on R ⊗X∗ as an orthogonal
reflection relative to λ1 − λ3, i.e. a reflection across Hα1−α3 . In particular, it takes the Weyl
chamber F , containing λ1−λ3, to its opposite Weyl chamber, containing λ3−λ1. Correspondingly,
conjugation by the representative permutation matrix of σλ1−λ3 takes PF to the opposite Borel
subgroup: (

1
1

1

)( ∗ ∗ ∗
∗ ∗
∗

)(
1

1
1

)−1
=
( ∗
∗ ∗
∗ ∗ ∗

)
.

It is easily checked from such explicit description that W acts simply transitively on BT .

4.1.4 Bruhat Decomposition

At least for GL3(K), the Bruhat decomposition can be checked explicitly without too much effort.
Let B be the Borel subgroup of upper triangular matrices. Clearly BIB = B. For non-trivial

double cosets, for example, any element of B
(

1
1

1

)
B has the form(

# ∗ ∗
# ∗

#

)(
1

1
1

)(# ∗ ∗
# ∗

#

)
=

(
# ∗ ∗

# ∗
#

)(
# ∗

# ∗ ∗
#

)
=
( ∗ ∗ ∗

# ∗ ∗
#

)
,

where # indicates a nonzero element, and a computation shows that all matrices in GL3(K) of this
form appear in this double coset. Similarly, we find

B
(

1
1

1

)
B =

(
# ∗ ∗

# ∗
#

)(
# ∗ ∗

#
# ∗

)
=
(

# ∗ ∗
∗ ∗
# ∗

)
B
(

1
1

1

)
B =

(
# ∗ ∗

# ∗
#

)(
#

# ∗ ∗
# ∗

)
=
( ∗ ∗ ∗

# ∗ ∗
# ∗

)
.
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For B
(

1
1

1

)
B and B

(
1

1
1

)
B, consider elements(

# ∗ ∗
# a
b

)(
1

1
1

)( c d ∗
# ∗

#

)
=

(
# ∗ ∗

# a
b

)(
#

# ∗
c d ∗

)
=
( ∗ ∗ ∗
ac #+ad ∗
bc bd ∗

)
(

# ∗ ∗
# a
b

)(
1

1
1

)( c d ∗
# ∗

#

)
=

(
# ∗ ∗

# a
b

)(
# ∗

#
c d ∗

)
=
( ∗ ∗ ∗
ac ad ∗
bc bd ∗

)
,

which shows that (aij) ∈ B
(

1
1

1

)
B satisfy a21a32 = a22a31 while we have inequality for (aij) ∈

B
(

1
1

1

)
B. A more detailed computation shows that all matrices in Sp4(K) of the form

( ∗ ∗ ∗
∗ ∗ ∗
# ∗ ∗

)
with these properties lie in these double cosets, so the Bruhat decomposition holds.

4.2 SL3(K)

The special linear group SLn(K) is the subgroup of GLn(K) consisting of matrices of determinant
1. It can be shown that differentiating the determinant gives the trace, so the corresponding Lie
algebra sln(K) consists of the traceless matrices (matrices of trace zero).

Clearly (GLn(K),GLn(K)) ⊂ SLn(K). It can be shown that the other inclusion holds if n 6= 2
or |K| 6= 2 (which holds here since K is algebraically closed), so SLn(K) is the derived group of
GLn(K); see for example [14]. Moreover, SLn(K) is semisimple; arguing as in GLn(K), the radical
lies in the identity component of the subgroup of scalar matrices, which is just the identity matrix.
We check the relation between the structures of the two groups against the general theory in Section
3.5.

Let G = GLn(K) and G′ = SLn(K). Retain the notations T,Φ, αi, λi, etc. for G. Primed
symbols will denote the analogues for G′. The radical R(G), the subgroup of scalar matrices, equals
Z(G)◦(= Z(G)) and is a central torus. Then G = G′R(G) with finite intersection R(G) ∩ G′ =
{tI : tn = 1}. Since ker(αi − αj) = {t ∈ T : ti = tj}, we also have Z(G) =

⋂
α∈Φ kerα.

To simplify notation, we now assume n = 3. The diagonal matrices again form a maximal torus

T ′ =
( ∗
∗
∗

)
= T ∩G′.

This is the subtorus of T generated by the images of coroots λi−λj , i 6= j, of G. Composition with
the inclusion T ′ ↪→ T defines a Z-module homomorphism ϕ : X∗(T )→ X∗(T ′). Let α′i : T ′ → Gm

be image of αi, so α′i(t) = ti; these generate X∗(T ′), so ϕ is surjective. Since t ∈ T ′ if and only if
t1t2t3 = 1, ϕ has kernel Z(α1 + α2 + α3) and induces a Z-module isomorphism

X∗(T ′) ∼= (Zα1 ⊕ Zα2 ⊕ Zα3)/(Z(α1 + α2 + α3)).

Recall that Φ = {αi − αj : i 6= j} and Φ∨ = {λi − λj : i 6= j}. These span, respectively,

Q = {c1α1 + c2α2 + c3α3 : c1 + c2 + c3 = 0}
Q∨ = {c1λ1 + c2λ2 + c3λ3 : c1 + c2 + c3 = 0},
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which are rank-two submodules of the rank-three Z-modules X∗(T ) and X∗(T ), respectively. Then
(Q∨)⊥ = Z(α1 + α2 + α3), so X∗(T ′) ∼= X∗/(X∨)⊥. The calculation of roots is unchanged from G,
so Φ′ = {α′i − α′j : i 6= j} with one-dimensional rootspaces gα′i−α′j = 〈Eij〉; see Table 1 and Figure

1, with the implied intersection now with G′ instead of G. Moreover, in R ⊗X∗ with the unique
(up to scalar) admissible inner product, Z(α1 +α2 +α3) is the orthogonal complement of Q. Thus
X∗(T ′) is obtained from X∗(T ) by quotienting by the orthogonal complement of Q. In particular,
this maps Φ injectively into X∗(T ′), identifying it with Φ′. Moreover, the image Q′ of Q now has
full rank in the rank-two Z-module X∗(T ′).

Meanwhile, X∗(T
′) is the submodule of X∗(T ) of cocharacters with image in T ′, so

X∗(T
′) = {c1λ1 + c2λ2 + c3λ3 : c1 + c2 + c3 = 0},

which equals Q̃∨. The dual pairing is induced from that of G, i.e. 〈α′i, λj〉 = δij extended linearly;
this is well defined because in fact only elements of X∗(T

′) appear in the second entry. Again as in
G, we calculate (Φ∨)′ = {λi − λj : i 6= j}. As with the root lattice, while rkQ∨ < rkX∗(T ) (rank
as Z-modules), we have rk(Q∨)′ = rkX∗(T

′) for the span (Q∨)′ of (Φ∨)′. Thus going to the derived
group preserves the root and coroot systems while quotienting out the complements of their spans.
In particular, the (reduced) spherical apartment of G′ can be identified with that of G, and the
associated parabolic subgroups also follow the same calculation; see Figure 2.

4.3 PSL3(K)

For K algebraically closed, we may view PSL3(K) as SL3(K)/S, where S = {aI : a3 = 1} is the
subgroup of scalar matrices. Since S is finite, the canonical map π : SL3(K) → PSL3(K) is an
isogeny. In fact, SL3(K) and PSL3(K) are the only semisimple groups of type A2, being respectively
simply-connected and adjoint. These serve as examples of the discussion of isogeny in Section 3.4.

Retain the notations of the previous section, with primed symbols to denote objects defined for
G′ = SL3(K). Recall that

X∗(T ′) = (Zα1 ⊕ Zα2 ⊕ Zα3)/(Z(α1 + α2 + α3))

X∗(T
′) = {c1λ1 + c2λ2 + c3λ3 : ci ∈ Z, c1 + c2 + c3 = 0}.

In the basis X∗(T ′) = Zα′1 ⊕ Zα′2, where α′i is the image of αi, we compute

Φ′ = {α′i − α′j : i 6= j} = {±(α′1 − α′2),±(2α′1 + α′2),±(α′1 + 2α′2)}
Q′ = {c1α

′
1 + c2α

′
2 : ci ∈ Z, c1 + c2 ≡ 0 (mod 3)}.

An element c1α
′
1 + c2α

′
2 ∈ R ⊗X∗(T ′), ci ∈ R, lies in the weight lattice P ′ if and only if 〈c1α

′
1 +

c2α
′
2, λi − λj〉 = ci − cj ∈ Z for all i 6= j (and where c3 = 0), so P ′ = X∗(T ′). Thus G′ is

simply-connected. If we are careful to keep in mind that α′1 +α′2 +α′3 = 0, we may carry out these
computations more symmetrically:

Q′ = {c1α
′
1 + c2α

′
2 + c3α

′
3 : ci ∈ Z, c1 + c2 + c3 ≡ 0 (mod 3)}

X∗(T ′) = P ′ = {c1α
′
1 + c2α

′
2 + c3α

′
3 : ci ∈ Z}.
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Meanwhile, π(G′) = PSL3(K) has maximal torus π(T ′) = T ′/S. Composition with the surjec-
tion π : T ′ → π(T ′) defines an injective Z-module homomorphism ψ : X∗(π(T ′)) → X∗(T ′). The
image consists of characters of T ′ that factor through π, i.e. kill S. This means

(c1α
′
1 + c2α

′
2 + c3α

′
3)(aI) = ac1+c2+c3 = 1

for any third root of unity a, so the image of ψ is exactly Q′. Since Q′ has full rank in X∗(T ′), we
may identify R⊗X∗(π(T ′)) with R⊗X∗(T ′) via ψ. Thus

R⊗X∗(π(T ′)) ∼= (Rα1 ⊕ Rα2 ⊕ Rα3)/R(α1 + α2 + α3),

and writing α′′i for the image of αi, we have

X∗(π(T ′)) = {c1α
′′
1 + c2α

′′
2 + c3α

′′
3 : ci ∈ Z, c1 + c2 + c3 ≡ 0 (mod 3)},

where c1α
′′
1 + c2α

′′
2 + c3α

′′
3, when it lies in X∗(π(T ′)), is the preimage of c1α

′
1 + c2α

′
2 + c3α

′
3 under ψ.

The adjoint action (i.e. conjugation) of T ′ on G′ induces that of π(T ′) on π(G′). In exact
analogy with G′, we compute

Φ′′ = {α′′i − α′′j : i 6= j}
X∗(π(T ′)) = Q′′ = {c1α

′′
1 + c2α

′′
2 + c3α

′′
3 : ci ∈ Z, c1 + c2 + c3 ≡ 0 (mod 3)}

P ′′ = {c1α
′′
1 + c2α

′′
2 + c3α

′′
3 : ci ∈ Z}.

In particular, π(G′) is adjoint.
Note that the map

P ′ → Z/3Z
c1α
′
1 + c2α

′
2 + c3α

′
3 7→ (c1 + c2 + c3) + 3Z

and the analogue for P ′′ induce isomorphisms P ′/Q′ ∼= Z/3Z ∼= P ′′/Q′′. Since Z/3Z has no
nontrivial subgroup (equivalently, no proper intermediate lattice exists between P ′ and Q′ and
between P ′′ and Q′′), G′ and π(G′) account for all possible fundamental groups, hence all semisimple
groups of type A2. More generally, the same calculations show that An−1 has fundamental group
Z/nZ, and that SLn(K) and PSLn(K) are the simply-connected and adjoint semisimple groups of
this type.

Section 4.5 below looks at Sp4(K). In analogy with the current section, it can be shown that
Sp4(K) and PSp4(K) are the simply-connected and adjoint semisimple groups of type C2.

4.4 Interlude on Bilinear Forms

A bilinear form on a K-vector space V is a map B : V × V → K that is K-linear in each entry. It
is symmetric if B(v, w) = B(w, v) for all v, w ∈ V and alternating if B(v, v) = 0 for all v ∈ V . In
characteristic 6= 2, the last condition is equivalent to B(v, w) = −B(w, v) for all v, w ∈ V .
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Let dimV = n, and fix a bilinear form B on V . Given a fixed basis of V , we can write
B(v, w) = xtMy for a unique matrix M , where x (resp. y) is the coordinate vector of v (resp. w)
under this basis, viewed as a 1× n matrix; we say that B is given by M (under this basis). Given
another basis with transition matrix P , i.e. so that Px (resp. Py) is the new coordinate vector
of v (resp. w), we have B(v, w) = (Px)tM(Py) = xt(P tMP )y, so B is now given by P tMP . In
calculations, we will choose a convenient basis to simplify the corresponding matrix.

The isometry group or stabilizer group of B is the group of automorphisms ϕ of V that preserve
B, that is, B(ϕv, ϕw) = B(v, w). Fix a basis of V . If B is given by M , these are invertible
linear transformations given by matrices A satisfying AtMA = M , or equivalently the fixed points
of the involution A 7→ (MA−1M−1)t of GLn(K). Differentiating AtMA = M shows that the
corresponding Lie algebra, identified with a subalgebra of gln(K), consists of matrices A satisfying
AtM +MA = 0.

Two bilinear forms B,B′ on V are called equivalent if they differ by a change of basis, i.e. if
there exists some automorphism f of V such that B(fv, fw) = B′(v, w) for all v, w ∈ V . Then
the isometry groups of B and B′ are isomorphic via conjugation by f ; indeed, ϕ in the isometry
group of B′ implies B(fϕf−1v, fϕf−1w) = B′(ϕf−1v, ϕf−1w) = B′(f−1v, f−1w) = B(v, w), and
similarly for the inverse map. It is also useful to rephrase equivalence using coordinates. Fix a
basis of V . Writing B(v, w) = xtMy as before and P for the matrix representation of f , we get
B′(v, w) = B(fv, fw) = (Px)tM(Py) = xt(P tMP )y. Note that this relation between matrices
giving equivalent bilinear forms is the same as that between the matrices of one bilinear form under
two bases.

The kernel of B is the subspace of V of vectors v with B(v, w) = 0 for all w ∈ V . A bilinear
form is called nondegenerate if its kernel is trivial, and degenerate otherwise. We will only be
concerned with nondegenerate bilinear forms.

4.5 Sp4(K)

The symplectic group Spm(K), m even, is the isometry group of a nondegenerate alternating bilinear
form on Km. For m fixed, we may speak of the symplectic group for the following reason: for
arbitrary K (not necessarily algebraically closed), it can be shown that no such form exists for m
odd, and that for m = 2n even, there exists a unique such form up, defining Sp2n(K) uniquely
in GL2n(K), up to change of basis. Moreover, it can be shown that elements of Sp2n(K) have
determinant one, and that Sp2n(K) is connected. Here we look at Sp4(K) for the bilinear form
given by10

M =

(
1

−1
1

−1

)
.

10This choice of M and the obvious higher-rank analogues preserve the standard maximal torus and Borel subgroup
of GLm(K) (upper triangular matrices). Compare for example antidiag(I,−I), which preserves only the maximal
torus. Recall that a choice of Borel subgroup determines a base of the root system. Our choice of M also preserves
the standard pinning of GLm(K), a certain explicit basis for the rootspaces of simple roots (here the superdiagonal
elements Ei,i+1). These facts aid in some calculations.
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Higher-rank analogues will be similar. Where convenient, we will write G = Sp4(K) and g =
sp4(K).

For a diagonal matrix t, the condition to lie in Sp4(K) is tMt = M . Since

tMt =

( t1t4
−t2t3

t3t2
−t4t1

)
,

this happens exactly when t1t4 = t2t3 = 1. Hence

T := Sp4(K) ∩D =


 t1

t2
t−1
2

t−1
1

 : t1, t2 ∈ K∗
 .

This is in fact a maximal torus, so Sp4(K) has rank 2. For a diagonal matrix t, we will write
t = diag(t1, t2, t

−1
2 , t−1

1 ). Define α1, α2 : T → Gm by αi(t) = ti and λi : Gm → T by

λ1(x) =

( x
1

1
x−1

)
, λ2(x) =

(
1
x
x−1

1

)
.

Then X∗(T ) = Zα1 ⊕ Zα2 and X∗(T ) = Zλ1 ⊕ Zλ2 with dual pairing 〈αi, λj〉 = δij .
Computing AtM +MA = 0 shows that the Lie algebra sp4(K) consists of matrices of the form( a11 a12 a13 a14

a21 a22 a23 −a13
a31 a32 −a22 a12
a41 −a31 a21 −a11

)
.

From this, we can easily calculate the roots as before:

Φ = {±2α1,±2α2,±(α1 − α2),±(α1 + α2)} = {±αi ± αj : 1 ≤ i, j ≤ 2},

allowing i = j. In fact, the last expression generalizes to Sp2n(K) with 1 ≤ i, j ≤ n, and Φ is then
an irreducible root system of type Cn. Focusing on n = 2, we carry out computations for one each
of the two different types of roots: 2α1 (when i = j) and α1 + α2 (when i 6= j).

Since t1
t2
t−1
2

t−1
1

( 0 x
0

0
0

) t1
t2
t−1
2

t−1
1

−1

=

(
0 t21x

0
0

0

)
= (2α1)(t)

(
0 x

0
0

0

)
,

2α1 is a root. Since (xE14)2 = 0, we have exp(xE14) = 1 + xE14, so U2α1 is the image of

u2α1 : Ga → GL3(K)

x 7→
(

1 x
1

1
1

)
,
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satisfying as desired tu2α1(x)t−1 = u2α1((2α1)(t)x). Moreover,

T2α1 := (ker(2α1))◦ =

{(
1
x
x

1

)
: x ∈ K∗

}
, G2α1 := CG(T2α1) =

( ∗ ∗
∗
∗

∗ ∗

)
,

and G2α1 is (by an analogous argument as in GL3(K)) reductive of semisimple rank 1 and has
Borel subgroups

B2α1 =

( ∗ ∗
∗
∗
∗

)
, B′2α1

=

( ∗
∗
∗

∗ ∗

)
,

with U2α1 the unipotent part of B2α1 .
For the type i 6= j, we have for example the root α1 + α2 since t1

t2
t−1
2

t−1
1

( 0 x
0 −x

0
0

) t1
t2
t−1
2

t−1
1

−1

=

(
0 t1t2x

0 −t1t2x
0

0

)
= (α1 + α2)(t)

(
0 x

0 −x
0

0

)
.

Note that, although we need both entries x and −x to obtain an element of sp4(K), the rootspace
remains one-dimensional. Exponentiating, squares and higher powers again vanishes, so Uα1+α2 is
the image of

uα1+α2 : Ga → Sp4(K)

x 7→
(

1 x
1 −x

1
1

)
,

which satisfies tuα1+α2(x)t−1 = uα1+α2((α1 + α2)(t)x), and

Tα1+α2 := ker(α1 + α2)◦ =

{( x
x−1

x
x−1

)
: x ∈ K∗

}
, Gα1+α2 := CG(Tα1+α2) =

( ∗ ∗
∗ ∗
∗ ∗
∗ ∗

)
,

Bα1+α2 =

( ∗ ∗
∗ ∗
∗
∗

)
, B′α1+α2

=

( ∗
∗
∗ ∗
∗ ∗

)
.

It is easily checked that Uα1+α2 contains all elements in Sp4(K) of the form

(
1 ∗

1 ∗
1

1

)
, hence equals

the unipotent part of Bα1+α2 .
The roots and corresponding root spaces and one-dimensional unipotent subgroups are shown

in Table 2.
We now determine the Weyl group. Essentially the same argument as for GL3(K) shows that

CG(T ) = T . We show that NG(T ) is again the subgroup of monomial matrices. Any monomial
matrix normalizes T . Conversely, if (aij) normalizes T , then

∑
k tkaik(±1)k+jmjk = 0 for all i 6= j

and all values of tk. Despite the restriction t1t4 = t2t3 = 1 for Sp4(K), this still shows that
aikmjk = 0 for all i 6= j and all k. Indeed, the equation becomes

−t1aj1mk1 + t2aj2mk2 −
1

t2
ai3mk3 +

1

t1
ai4mj4 = 0.
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α gα Uα −α g−α U−α

2α1

(
0 x

0
0

0

) (
1 x

1
1

1

)
−2α1

(
0

0
0

x 0

) (
1

1
1

x 1

)
2α2

(
0

0 x
0

0

) (
1

1 x
1

1

)
2α2

(
0

0
x 0

0

) (
1

1
x 1

1

)
α1 − α2

(
0 x

0
0 x

0

) (
1 x

1
1 x

1

)
α2 − α1

(
0
x 0

0
x 0

) (
1
x 1

1
x 1

)
α1 + α2

(
0 x

0 −x
0

0

) (
1 x

1 −x
1

1

)
α1 + α2

(
0

0
x 0
−x 0

) (
1

1
x 1
−x 1

)
Table 2: Roots, root spaces, and one-dimensional unipotent subgroups of Sp4(K)

Fixing t2 and varying t1 shows that contribution from the two t1 terms is constant. If x, y ∈ K∗
are two distinct values for t1, then

−xai1mj1 +
1

x
ai4mj4 = −yai1mj1 +

1

yx
ai4mj4

⇒ (y − x)ai1mj1 =
x− y
xy

ai4mj4

and since xy can take on at least two values, we must have ai1mj1 = ai4mj4 = 0. The rest of the
argument goes through as in GL3(K).

By multiplying by a diagonal matrix in Sp4(K), a monomial matrix can be given nonzero
entries ±1 in the first two rows, from which it follows that all nonzero entries are ±1. It is then
straightforward to compute which of these matrices lie in Sp4(K) and are distinct modulo T ; we
find that W has eight elements represented by

n2α1 =

(
1

1
1

−1

)
, n2α2 =

(
1

1
−1

1

)
, nα1−α2 =

(
1

1
−1

−1

)
, nα1+α2 =

(
1

1
1

1

)
r0 =

(
1

1
1

1

)
, rπ/2 =

(
1

1
−1

1

)
, rπ =

(
1

−1
1

−1

)
, r3π/2 =

(
1

1
1
−1

)
,

where σα, represented by nα, acts on R⊗X∗ as a reflection relative to α. For example,

n−1
2α1

 t1
t2
t−1
2

t−1
1

n2α1 =

( −1
1

1
1

) t1
t2
t−1
2

t−1
1

( 1
1

1
−1

)
=

 t−1
1

t2
t−1
2

t1


n−1
α1+α2

 t1
t2
t−1
2

t−1
1

nα1+α2 =

(
1

1
1

1

) t1
t2
t−1
2

t−1
1

( 1
1

1
1

)
=

 t−1
2

t−1
1

t1
t2

 ,

so σ2α1 acts by α1 7→ −α1, α2 7→ α2, and σα1+α2 acts by α1 7→ −α2, α2 7→ −α1. Figure 3 shows
the root system with the unique (up to scalar) admissible inner product on R⊗X∗. Observe that
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σα are the reflections claimed and that the other four elements rθ act as rotations through angle θ,
giving W ∼= D8, the dihedral group of order 8.

2α1−2α1

α1 + α2

−α1 − α2

2α2

−2α2

α2 − α1

α1 − α2

Figure 3: Root system of Sp4(K)

Figure 4 shows the coroots, spherical apartment, and associated parabolic subgroups under the
unique (up to scalar) admissible inner product. As in GL3(K), it is easy to see that the action of
W by conjugation, on BT and on the set of parabolic subgroups containing T , corresponds via the
spherical apartment to the action of W on R⊗X∗.

For x = c1α1 + c2α2,

x− 〈x, λ1〉(2α1) = x− 2c1α1 = −c1α1 + c2α2 = σ2α1(x)

x− 〈x, λ1 + λ2〉(α1 + α2) = x− (c1 + c2)(α1 + α2) = −c2α1 − c1α2 = σα1+α2(x),

so (2α1)∨ = λ1, (α1 + α2)∨ = λ1 + λ2, and similarly for other roots of each type. Thus

Φ∨ = {±λ1,±λ2,±λ1 ± λ2} = {±λi,±λi ± λj : 1 ≤ i, j ≤ 2, i 6= j},

where the last expression holds for any Sp2n(K) with 1 ≤ i, j ≤ n, i 6= j. The root lattice Q is the
span of Φ = {±2α1,±2α2,±α1 ± α2}. For α = c1α1 + c2α2 ∈ R ⊗ X∗, ci ∈ R, we have α ∈ P if
and only if 〈α,±λi〉 = ±ci and 〈α,±λi ± λj〉 = ±ci ± cj are integral, so

Q = {c1α1 + c2α2 : ci ∈ Z, c1 + c2 ≡ 0 (mod 2)}
X∗(T ) = P = {c1α1 + c2α2 : ci ∈ Z}.

Thus Sp4(K) is simply-connected.

4.6 Orthogonal Groups

An orthogonal group is the isometry group of a symmetric bilinear form. Unlike with alternating
bilinear forms, there will in general be multiple inequivalent nondegenerate symmetric bilinear
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λ1−λ1

λ1 + λ2

−λ1 − λ2

λ2

−λ2

λ2 − λ1

λ1 − λ2

H2α2

Hα1−α2H2α1

Hα1+α2

( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

) ( ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗

)
( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗
∗ ∗

)( ∗ ∗ ∗
∗ ∗ ∗ ∗
∗

∗ ∗ ∗

)( ∗ ∗
∗ ∗ ∗ ∗
∗ ∗
∗ ∗ ∗ ∗

)
( ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗

)
( ∗ ∗
∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

)( ∗ ∗ ∗
∗
∗ ∗ ∗ ∗
∗ ∗ ∗

)( ∗ ∗ ∗ ∗∗ ∗
∗ ∗ ∗ ∗
∗ ∗

)

( ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗

)

( ∗ ∗ ∗
∗ ∗ ∗ ∗
∗
∗ ∗

)( ∗ ∗
∗ ∗ ∗ ∗
∗

∗ ∗ ∗

)

( ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗ ∗

)

( ∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗

)

( ∗ ∗
∗
∗ ∗ ∗ ∗
∗ ∗ ∗

) ( ∗ ∗ ∗
∗
∗ ∗ ∗ ∗
∗ ∗

)

( ∗ ∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗

)

Figure 4: Coroots, spherical apartment, and associated parabolic subgroups of Sp4(K)
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forms on a given vector space over a non-algebraically closed field. However, every such form
has an orthogonal basis, making the associated matrix diagonal. Scaling a basis vector scales
the corresponding diagonal matrix entry by a square, so that equivalences depend on which field
elements are squares. We assume here that the characteristic of the field is not two; for a discussion
of quadratic forms and orthogonal groups in characteristic two, see Sections 23.5-6 of [1].

For K algebraically closed, every element is a square. The orthogonal group for the therefore
unique (up to change of basis) nondegenerate bilinear form on Kn is denoted On(K) (or sometimes
GOn(K) in analogy with GLn(K)). Unlike in Sp2n(K), elements of On(K) have determinant ±1
(distinct in characteristic 6= 2), comprising two connected components. The identity component,
consisting of elements of determinant one, is called the special orthogonal group SOn(K). Here we
look at SO5(K) for the bilinear form given by

M =

(
1

−1
1

−1
1

)
.

Higher-rank analogues for n odd will be similar.11

For a diagonal matrix t, the condition to lie in O5(K) is tMt = M . Since

tMt =

 t1t5
−t2t4

t23
−t4t2

t5t1

 ,

this happens exactly when t1t5 = t2t4 = 1 and t3 = ±1. Since det t = (t1t5)(t2t4)t3, we have t3 = 1
for t ∈ SO5(K). Hence

T := SO5(K) ∩D =


 t1

t2
1
t−1
2

t−1
1

 : t1, t2 ∈ K∗
 .

This is in fact a maximal torus, so SO5(K) has rank 2. Note the similarity with Sp4(K). Defining
αi, λj as in Sp4(K), we have X∗(T ) = Zα1 ⊕ Zα2 and X∗(T ) = Zλ1 ⊕ Zλ2 with dual pairing
〈αi, λj〉 = δij .

Since

AtM +MA =

( a51 −a41 a31 −a21 a11
a52 −a42 a32 −a22 a12
a53 −a43 a33 −a23 a13
a54 −a44 a34 −a24 a14
a55 −a45 a35 −a25 a15

)
+

( a51 a52 a53 a54 a55
−a41 −a42 −a43 −a44 −a45
a31 a32 a33 a34 a35
−a21 −a22 −a23 −a24 −a25
a11 a12 a13 a14 a15

)
,

the condition AtM +MA = 0 implies, using for the diagonal entries that the characteristic is not
two, that the Lie algebra so5(K) consists of matrices of the form a11 a12 a13 a14 0

a21 a22 a23 0 a14
a31 a32 0 a23 −a13
a41 0 a32 −a22 a12
0 a41 −a31 a21 −a11

 .

11As in Sp4(K), this choice of M preserve the standard maximal torus, Borel subgroup, and pinning of GLn(K),
n odd. The analogues for n even are not symmetric, so we need another choice of M .
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From this, one easily calculates the roots as before:

Φ = {±α1,±α2,±(α1 − α2),±(α1 + α2)} = {±αi ± αj : 1 ≤ i, j ≤ 2},

allowing i = j. The last expression holds for any SO2n+1(K) with 1 ≤ i, j ≤ n, and Φ is then an
irreducible root system of type Bn.

Root vectors for the roots ±(α1 − α2),±(α1 + α2) still vanish when squared; for example,

gα1+α2 =

(
0 x

0 x
0

0
0

)
.

The remaining roots produce up to nonvanishing square terms, leading for the first time to nonlinear
entries in the one-dimensional unipotent subgroups Uα. For example, the root vectors xE12 +xE45

for the root α1 satisfy

(xE12 + xE45)2 =

(
0 x

0
0 −x

0
0

)2

=

(
0 −x2

0
0

0
0

)
, (xE12 + xE45)3 = 0

⇒ exp(xE12 + xE45) = I + (xE12 + xE45) +
1

2
(xE12 + xE45)2 =

 1 x − 1
2
x2

1
1 −x

1
1

 .

Indeed, setting

uα1 : Ga → SO5(K)

x 7→

 1 x − 1
2
x2

1
1 −x

1
1

 ,

we have uα1(x)uα1(y) = uα1(x+ y) and

tuα1(x)t−1 =

 t1
t2

1
t−1
2

t−1
1

 1 x − 1
2
x2

1
1 −x

1
1

 t−1
1

t−1
2

1
t2
t1

 =

 1 t1x − 1
2
t21x

2

1
1 −t1x

1
1

 = uα1(α1(t)x),

as desired. Table 3 summarizes the information for all roots.
Figures 5 and 6 show the root system and spherical apartment of SO5(K). Note that the

root system of SO5(K) is isomorphic to that of Sp4(K) from Figure 3 by a 45◦ rotation. This
exceptional isomorphism of root systems B2

∼= C2 is reflected in the isomorphism of Lie algebras
sp4(K) ∼= so5(K).

As expected given this observation, the calculation of the Weyl group of SO5(K) is similar to
that for Sp4(K) and also yields the dihedral group of order 8. One then verifies as in Sp4(K) that
Figures 5 and 6 show R⊗X∗ and R⊗X∗, respectively, under the unique (up to scalar) admissible
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α gα Uα −α g−α U−α

α1 + α2

(
0 x

0 x
0

0
0

) (
1 x

1 x
1

1
1

)
−α1 − α2

(
0

0
0

x 0
x 0

) (
1

1
1

x 1
x 1

)

α1 − α2

(
0 x

0
0

0 x
0

) (
1 x

1
1

1 x
1

)
α2 − α1

(
0
x 0

0
0
x 0

) (
1
x 1

1
1
x 1

)

α1

(
0 x

0
0 −x

0
0

)  1 x − 1
2
x2

1
1 −x

1
1

 −α1

(
0

0
x 0

0
−x 0

)  1
1

x 1
1

− 1
2
x2 −x 1


α2

(
0

0 x
0 x

0
0

)  1
1 x 1

2
x2

1 x
1

1

 −α2

(
0

0
x 0
x 0

0

)  1
1
x 1

1
2
x2 x 1

1


Table 3: Roots, root spaces, and one-dimensional unipotent subgroups of SO5(K)

α1−α1

α1 + α2

−α1 − α2

α2

−α2

α2 − α1

α1 − α2

Figure 5: Root system of SO5(K)
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λ1−λ1

λ1 + λ2

−λ1 − λ2

λ2

−λ2

λ2 − λ1

λ1 − λ2

Hα2

Hα1−α2Hα1

Hα1+α2

( ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

) ( ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗

)
( ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗

)
( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗
∗ ∗ ∗ ∗

)
( ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗ ∗ ∗

)
( ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

)
( ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

)
( ∗ ∗ ∗ ∗

∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

)
( ∗ ∗ ∗ ∗ ∗

∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗

)

( ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗

)

( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗
∗
∗ ∗

)( ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗

∗
∗ ∗ ∗ ∗

)

( ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗ ∗ ∗ ∗

)

( ∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

)

( ∗ ∗
∗
∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

) ( ∗ ∗ ∗ ∗
∗
∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗

)

( ∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗

∗

)

Figure 6: Coroots, spherical apartment, and associated parabolic subgroups SO5(K)

29



inner product, and that the Weyl group acts compatibly on R⊗X∗ and on the overlaid parabolic
subgroups. Recall also that the root and weight lattices are determined up to isomorphism by the
root system, hence isomorphic to those of Sp4(K). Indeed, we have α∨i = 2λi and (±αi ± αj)∨ =
±λi ± λj , so

Φ∨ = {±2λ1,±2λ2,±λ1 ± λ2} = {±λi ± λj : 1 ≤ i, j ≤ 2},

allowing i = j, and the last expression holds for any SO2n+1(K) with 1 ≤ i, j ≤ n. The root lattice
Q is the span of Φ = {±α1,±α2,±α1±α2}. For α = c1α1 + c2α2 ∈ R⊗X∗, ci ∈ R, we have α ∈ P
if and only if 〈α,±2λi〉 = ±2ci and 〈α,±λi ± λj〉 = ±ci ± cj are integral, so

X∗(T ) = Q = {c1α1 + c2α2 : ci ∈ Z}

P = {c1α1 + c2α2 : ci ∈
Z
2
, c1 + c2 ∈ Z}.

Thus SO5(K) is adjoint. Alternatively, for n = 2, the isomorphism sp4(K) ∼= so5(K) allows one to
read off Q and P from the corresponding lattices for Sp4(K) found in the previous section.

The simply-connected semisimple group of type Bn is called Spin2n+1(K). For n = 2, the
isomorphism sp4(K) ∼= so5(K) allows one to construct an isogeny (in fact a double cover) Sp4(K)→
SO5(K), and Sp4(K) being simply-connected can be identified with Spin5(K). This depends on
the exceptional isomorphism B2

∼= C2 and does not generalize to arbitrary rank.

5 General Theory over Non-Algebraically Closed Fields

The remainder of this paper briefly addresses the relative structure theory of reductive groups, that
is, when non-algebraically closed fields of definition are considered. We only outline the main ideas
and give few details and no proof. Throughout, let k be a subfield of the algebraically closed field
K. Again, the reader is encouraged to read the general theory together with the explicit examples
in Section 6.

5.1 Field of Definition and k-Groups

Recall that every linear algebraic group can be realized as a closed subgroup of some GLn(K). We
are now interested in subgroups given by polynomials with coefficients in k. Some care is needed
here. A setX ⊂ Am is called k-closed if it is the set of zeros of some polynomials with coefficient in k,
generating an ideal I ⊂ K[T1, . . . , Tm]. More intrinsic, however, is I(X) =

√
I, which may properly

contain I. One says that X is defined over k if I(X) is generated by polynomials with coefficients
in k, or equivalently by Ik(X) := I(X) ∩ k[T1, . . . , Tm]. In this case, we have K[X] = K ⊗k k[x]
for the k-algebra k[x] := k[T ]/Ik(X).

This extension of scalar suggests the following more intrinsic treatment of field of definition.
Given a K-vector space V , a k-structure on V is a k-subspace Vk such that V ∼= K ⊗k Vk. This
means that some K-basis for V is also a k-basis for Vk. A k-structure on a K-algebra A is a k-
subalgebra Ak that is a k-structure on the underlying vector space of A. An ideal I of A is defined
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over k if Ik := I ∩Ak is a k-structure on I, or equivalently, if Ik generates I as an ideal. Note that
this agrees with the definition above. Without entering into details, an affine k-variety X is an
affine K-variety together with a k-structure on the coordinate ring; this defines a k-topology on X,
compatible k-structures on coordinate rings of subvarieties, and the k-rational points X(k) of X.
These definitions can then be generalized to arbitrary varieties or schemes; for details, see Sections
AG11, 12 of [1].12

A homomorphism f : A→ B of K-algebras with k-structures Ak and Bk is defined over k or is a
k-morphism if f(Ak) ⊂ Bk, i.e. if they respect the k-structure. A morphism of k-varieties is defined
over k or is a k-morphism if the induced map on the coordinate ring is defined over k, which sets
up a contravariant equivalence between the category of affine k-varieties under k-morphisms and
the category of affine K-algebras with k-structures under k-morphisms. The product of k-varieties
has a natural k-structure and is again a k-variety. An algebraic group G whose underlying variety
is a k-variety is defined over k or is a k-group if multiplication and inversion are defined over k.
An affine or linear k-group is one whose underlying variety is affine. For a linear k-group G, the
underlying K-variety may be embedded as a closed subgroup of some GLn(K) in such a way that
the subgroup G(k) of G equals G ∩GLn(k). This concrete view will suffice for our discussion.

A k-torus is a torus defined over k. A k-torus T is called k-split if X(T )k, the group characters
of T defined over k, spans k[T ], or equivalently if T is k-isomorphic to some Gn

m, that is, isomorphic
under a k-morphism. A k-torus T is called k-anisotropic if X(T )k = 0.

5.2 Combinatorial Data of Reductive k-Groups

Let G now denote a reductive k-group. A maximal k-split torus of G is a k-split torus maximal
under containment. It can be shown that maximal k-split tori of G are conjugate under G(k), so
we may define the k-rank of G to be the dimension of any such torus. The relative structure theory
of reductive groups uses combinatorial data analogous to those in the absolute theory. However,
the role of the maximal torus and Borel subgroups in the absolute theory are now played by the
maximal k-split torus and minimal parabolic k-subgroups; in fact, G may have no Borel k-subgroup.
Thus, for example, the conjugacy theorem states that minimal parabolic subgroups defined over
k are conjugate under G(k). Many of the arguments in the relative theory depend on a careful
analysis of these parabolic subgroups.

Fix a maximal k-split torus S. The set of roots of G relative to the adjoint action of S is
denoted kΦ, and its elements are called k-roots. This gives a root space decomposition of g. The
k-Weyl group kW = NG(S)/CG(S), which is finite, acts simply transitively on the set of minimal
parabolic k-subgroups containing CG(S). It also acts faithfully on X∗(S) and X∗(S), and by linear
extension on R ⊗X∗(S) and R ⊗X∗(S). These vector spaces can be endowed with an admissible
inner product, one invariant under kW .

12Again we only consider reduced coordinate rings. Moreover, note that this definition of k-variety as a K-variety
with k-structure is not intrinsic to k. For a more modern treatment of k-groups as functor of points of group schemes
over k, see [7].
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If G is semisimple, then kΦ is a (possibly non-reduced) root system13 in R ⊗ X∗(S) of rank
the k-rank of G and abstract Weyl group isomorphic to kW . In particular, for each α ∈ kΦ, kW
contains an element σα that acts on R⊗X∗(S) as a reflection relative to α, and these σα generate

kW . Under an admissible inner product on R⊗X∗(S), these become orthogonal reflections. If P is a
minimal parabolic k-subgroup containing S, then there exists a basis of kΦ under which the positive
roots are those k-roots occuring in Ru(P ). Moreover, G(k) contains a full set of representatives of

kW , and we have the relative Bruhat decomposition G(k) =
⋃
σ∈kW U(k)σU(k).

For G merely reductive, S′ := (S∩(G,G))◦ is a maximal k-split torus of the semisimple derived
group (G,G). With this choice of maximal k-split torus, kΦ, kW , and other combinatorial data of
G and (G,G) can be identified as in the absolute theory. The k-rank of (G,G) is the semisimple
k-rank of G. Then kΦ is a (possibly non-reduced) root system in its span in R ⊗ X∗(S), which
can be identified with R ⊗ X∗(S′), of rank the semisimple k-rank of G and abstract Weyl group
isomorphic to kW .

5.3 Classification of Reductive k-Groups

A reductive k-group G is called k-split if G has a maximal k-split torus, i.e. if its k-rank equals
its (absolute) rank. In this case, the maximal k-split torus S is in fact a maximal torus T , and
the relative and absolute combinatorial data coincide. For example, GLn(K), SLn(K), PSLn(K),
Spn(K), PSpn(K) are all split over the prime field of K, and the structure theory of G(k) is
therefore in each case quite similar to that of G. In particular, the root spaces are one-dimensional.

New phenomena occur for non-split groups. For example, suppose the maximal k-split torus
S is (properly) contained in a maximal torus T . Since some roots that are distinct relative to T
can become equal relative to S, the corresponding root spaces merge and need no longer be one-
dimensional. Moreover, such data as kΦ and the k-rank are not preserved under arbitrary isogenies.
One recovers their invariance by restricting to central isogenies; see for example Section 22 of [1].

Note that a k-group may trivially be viewed as a K-group, which is automatically split, by
ignoring the rational structure. Since the absolute theory already classifies reductive K-groups,
the classification of reductive k-groups comes down to determining, for each reductive K-group G
representing a K-isomorphism class, the k-groups up to k-isomorphism that become isomorphic to
G over K. A central tool for this is Galois cohomology, the group cohomology for the absolute
Galois group of k; it can be shown that k-groups that become isomorphic over K are classified up
to k-isomorphism by a certain first cohomology set. For G nonabelian, this set is not a group but
a pointed set with a distinguished “identity” that corresponds in this classification to the k-split
form; non-identity classes correspond to the various non-split forms, obtained by “twisting” the
split form. Introductions to Galois cohomology can be found for example in [13] and [11]. Some
references on the Galois cohomology of algebraic groups are Chapter VI Section 1 of [7], Chapter
6 of [8], Section 29 of [5], and [6].

13Even for a non-reduced root system, it follows quickly from the integrality condition that ±α,±2α are the only
possible forms of roots that are multiples of one another. One can show that only one new infinitely family of
irreducible root systems arises, called type BCl because it is a union of Bl and Cl with some roots identified.
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Note that the relative combinatorial data introduced above has no content if G is k-anisotropic,
that is, contains no nontrivial k-split torus. More generally, the data ignores what is called the
anisotropic kernel of G. Tits’s classification theorem for k-reductive groups states that the k-
isomorphism class of G is determined by its K-isomorphism class, its anisotropic kernel, and an
additional data called the index ; in particular, the absolute theory already essentially gives the
classification of split reductive k-groups. Given the classification over K, it remains to determine
for each K-isomorphism class the possible anisotropic kernels and indices, a work started by Tits
and continued by Selbach. The classification of anisotropic kernels depends heavily on the nature
of the field k, and in particular on its Brauer group; for details, see Chapter VI of [7].

6 Examples: Orthogonal Groups over R

As already mentioned, GL3(C), SL3(C), PSL3(C), Sp4(C), and PSp4(C) are split over the base field
Q, so the computations of combinatorial data are analogous for their R-rational points. Here we
consider (nondegenerate) symmetric bilinear forms and orthogonal groups, which, unlike alternating
bilinear forms, are in general not unique up to equivalence over non-algebraically closed fields.

6.1 Generalities on Symmetric Bilinear Forms and Orthogonal Groups

Let the pair (V,B) denote a vector space V equipped with a nondegenerate symmetric bilinear
form B. More details on the basic notions of bilinear forms (or on the equivalent data of quadratic
forms for characteristic 6= 2) can be found for example in Chapter IV of [10] and I.18 of [7].

Let V = Kn with k-structure Vk = kn, and let E be an extension of k lying in K. A given
(Vk, Bk) extends uniquely to (VE , BE) by extension of scalars. Recall that V has a unique (up to
equivalence) nondegenerate symmetric bilinear form, so that any (Vk, Bk), (Vk, B

′
k) become equiv-

alent under extension to K and there exists up to isomorphism a unique rank-n orthogonal group
over K. Like k-forms of algebraic groups, and in fact by the same argument, equivalence classes of
pairs (Vk, Bk) are also classified by a certain first cohomology set; for details, see I.19 of [7] or III
Appendix 2 §2 of [11]. Mapping (Vk, Bk) to its isometry group therefore induces a map from the
first cohomology set classifying equivalence classes of nondegenerate symmetric bilinear forms on
Vk to the first cohomology set classifying k-isomorphism classes of rank-n orthogonal groups over k.
While it can be shown that this is surjective, it may fail to be injective, as inequivalent symmetric
bilinear forms on Vk can have k-isomorphic isometry groups; for example, Bk and −Bk have the
same isometry group but may be inequivalent.

Recall that the k-split orthogonal group is naturally identified with the distinguished “identity”
in the first cohomolgy set. We now define the corresponding notion of a split symmetric bilinear
form. A nonzero v ∈ V is called isotropic if B(v, v) = 0. We call (V,B) totally isotropic, isotropic,
or anisotropic if correspondingly all, some, or no nonzero vector is isotropic. A hyperbolic plane is
a two-dimensional vector space V with a nondegenerate isotropic symmetric bilinear form B. It
follows easily that there are two linearly independent isotropic vectors v, w ∈ V with B(v, w) 6= 0,
so that a hyperbolic plane over a given field is uniquely determined up to isometry. Concretely, on
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V = k2, we can for example take the bilinear form given by
(

1
−1

)
, with isotropic vectors (1,±1),

or the equivalent bilinear form given by ( 1
1 ), with isotropic vectors (1, 0) and (0, 1).

The isotropy index or Witt index of (V,B) is the maximum dimension of totally isotropic
subspaces of V . Witt’s theorem states that (V,B) of Witt index m is equivalent to an orthogonal
sum of m hyperbolic planes and an anisotropic complement, the anisotropic kernel of (V,B), that
is unique up to isometry. A pair (V,B) is called split if it has the largest possible Witt index
bdimV/2c, or equivalently by Witt’s theorem, if it is an orthogonal sum of hyperbolic planes and,
in odd dimension, a one-dimensional anisotropic kernel.

With this definition, it can be shown that (Vk, Bk) is split if and only if the orthogonal group
over k that it defines is k-split; that is, in the above map between first cohomology sets, the preimage
of the identity is exactly the classes corresponding to the k-split forms. Moreover, we say that E
splits (or is a splitting field of) (Vk, Bk) if (VE , BE) is split, and that E splits (or is a splitting field
of) a k-group G if its base extension to E is E-split. For any E, we then conclude that E splits
(Vk, Bk) if and only if it splits the orthogonal group over k that it defines.

6.2 Orthogonal Groups over R

Recall that every (nondegenerate) symmetric bilinear form has an orthogonal basis and that scaling
a basis vector multiplies the corresponding diagonal entry by a square. Over R, each diagonal
entry can thus be made ±1. Sylvester’s theorem for real symmetric bilinear forms states that the
numbers m and k of +1 and −1 is independent of the choice of orthogonal basis. Nondegenerate
real symmetric bilinear forms are therefore classified up to equivalence by this pair (m, k), called
the index of the form. Write SO(m, k) for the special orthogonal group over R preserving a bilinear
form with index (m, k).

Here we consider the distinct R-forms of special orthogonal groups in R5, which all become
isomorphic over the algebraic closure C to the unique special orthogonal group SO5(C) already
examined in Section 4.6. Since SO(m, k) = SO(k,m), we only have three indices to consider: (5, 0)
(the usual dot product), (4, 1), and (3, 2). The corresponding isometry groups give all the R-forms
up to R-isomorphism.

6.2.1 Split R-Form: SO(3, 2)

The space R5 with bilinear form of index (3, 2) given by diag(1, 1, 1,−1,−1) with respect to the
standard basis has Witt index 2, being the orthogonal sum of two hyperbolic planes, Re1⊕Re5 and
Re2 ⊕ Re4 with the restricted bilinear form given by diag(1,−1), and an isotropic kernel, the line
Re3. Changing bases for the hyperbolic planes so that the bilinear forms are given by antidiag(1, 1)
and antidiag(−1,−1), we get

M =

(
1

−1
1

−1
1

)
.

34



A diagonal matrix t lies in O(3, 2) if and only if tMt = M . Since

tMt =

 t1t5
−t2t4

t23
−t4t2

t5t1


this occurs exactly when t1t5 = t2t4 = t23 = 1. Then t ∈ SO(3, 2) if and only if 1 = det t =
(t1t5)(t2t4)t3 = t3, so

T := SO(3, 2) ∩D =


 t1

t2
1
t−1
2

t−1
1

 : t1, t2 ∈ R∗
 .

This is in fact not only a maximal R-split torus but also an (absolute) maximal torus, so SO(3, 2)
is R-split. The relative combinatorial data therefore reduce to the absolute case, SO5(C), already
considered in Section 4.6. The calculations for the Lie algebra, roots, and the corresponding root
spaces and one-dimensional unipotent subgroups also remain the same; see Table 3 and Figures 5
and 6.

6.2.2 SO(4, 1)

The Witt index is now 1, and by a similar change of basis, we may use the bilinear form given by

M =

(
1

1
1

1
1

)
.

By a similar calculation,

S := SO(4, 1) ∩D =


 t1

1
1

1
t−1
1

 : t1 ∈ R∗
 ,

and this is a maximal R-split torus. Thus SO(4, 1) has R-rank 1 and X∗(S) is free abelian on
α1 : t 7→ t1. It is easy seen that

CG(S) =

( ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗

)
, NG(S) =

( ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗

)
∪
( ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗

)
,

so the R-Weyl group is RW = {id, σ}, with σ represented by

n =

(
1

1
1

1
1

)
.

Here and in the sequel, note that the anisotropic kernel of the bilinear form is irrelevant for the
combinatorial data.
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Computing AtM +MA = 0 shows that the Lie algebra consists of matrices of the form a11 a12 a13 a14 0
a21 0 a23 a24 −a12
a31 −a23 0 a34 −a13
a41 −a24 −a34 0 −a14
0 −a21 −a31 −a41 −a11

 ,

from which one easily finds the roots and associated data, shown in Table 4.

gα1,i Uα1,i g−α1,i U−α1,i

gα1,1 =

(
0 x

0 −x
0

0
0

)
Uα1,1 =

 1 x − 1
2
x2

1 −x
1

1
1

 g−α1,1 =

(
0
x 0

0
0

−x 0

)
U−α1,1 =

 1
x 1

1
1

− 1
2
x2 −x 1


gα1,2 =

(
0 x

0
0 −x

0
0

)
Uα1,2 =

 1 x − 1
2
x2

1
1 −x

1
1

 g−α1,2 =

(
0

0
x 0

0
−x 0

)
U−α1,2 =

 1
1

x 1
1

− 1
2
x2 −x 1


gα1,3 =

(
0 x

0
0

0 −x
0

)
Uα1,3 =

 1 x − 1
2
x2

1
1

1 −x
1

 g−α1,3 =

(
0

0
0

x 0
−x 0

)
U−α1,3 =

 1
1

1
x 1
− 1

2
x2 −x 1


Table 4: Roots, independent root vectors, and one-dimensional unipotent subgroups of SO(4, 1)

In particular, RΦ = {±α1} is irreducible of type A1, with both rootspaces of dimension greater
than 1 (in fact 3); we denoted the spaces spanned by the natural independent root vectors g±α1,i

and the corresponding one-dimensional unipotent subgroups U±α1,i, 1 ≤ i ≤ 3. Moreover, there
are nondiagonal generalized eigenvectors of the zero character,(

0
0 x
−x 0

0
0

)
,

(
0

0 x
0

−x 0
0

)
,

(
0

0
0 x
−x 0

0

)
,

whose exponentials generate

A =
{(

1
O

1

)
: O ∈ SO3(R)

}
corresponding to the anisotropic kernel of the bilinear form. Recall that neither of these phenomena
occurs in the absolute theory.

The absolute theory associated a parabolic subgroup Pλ = 〈T,Uα : α ∈ Φ, 〈α, λ〉 ≥ 0〉 to
λ, and in fact to each facet, in the coroot space. The relative theory has an analogous concrete
interpretation of the parabolic subgroups. Here, the relative coroot space R ⊗ X∗(S) has one
hyperplane Hα1 dividing it into two maximal facets, containing λ1 and −λ1. Note that an absolute
maximal torus T is the group generated by the exponentials of the generalized eigenvectors for the
zero character. Similarly, we define Pλ1 to be the group generated by S, Uα1,i, and additionally A,
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and similarly for P−λ1 :

Pλ1 = 〈S,A,Uα1,i : 1 ≤ i ≤ 3〉 =

( ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗

)
P−λ1 = 〈S,A,U−α1,i : 1 ≤ i ≤ 3〉 =

( ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

)
The R-coroot lattice encodes the containment of R-parabolic subgroups, so that maximal facets
again correspond to minimal R-parabolic subgroups. Unlike in the absolute theory, however, they
may no longer be Borel subgroups, as this example demonstrates. However, like in the absolute
theory, RW acts simply transitively on the set of minimal R-parabolic subgroups; σ (acting as
conjugation by n) interchanges P±λ1 , compatible with its action on R ⊗ X∗(S) as a reflection
relative to λ1.

6.2.3 Anisotropic R-Form: SO(5, 0)

The bilinear form of index (5, 0) is positive definite, say given by M = I. This is just the dot
product, so SO(5, 0) is the usual real special orthogonal group SO5(R). With this choice of M , a
similar calculation as above shows that there is no nontrivial diagonal element satisfying tMt = t;
in fact SO(5, 0) has no non-trivial R-split torus, i.e. it is R-anisotropic. The relative combinatorial
data therefore have no content.
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